期刊文献+

以轮廓为对象的体态特征情绪分类与预测

Emotional classification and prediction of body movements based on silhouette
下载PDF
导出
摘要 采用摄像机对人体行为进行采集,基于OpenCV库对人体行为进行特征提取,在已有学者研究的基础上,拓展所采集低层运动特征,引入PAD情绪量表对个体进行评估.采用中国民族音乐作为情绪诱发素材,对10名受试者进行正、中、负性情绪诱发,受试者通过外显行为将自身情绪自然表达出来;通过PAD情绪量表评估每段诱发素材的情绪状态,视频采集该情绪状态下受试者的行为;采用轮廓法提取视频中个体行为的体态特征,主要包括个体轮廓相对面积及变化特征;结合情绪量表的评估结果,采用支持向量机对个体体态特征所蕴含的情绪进行分类学习,实现体态特征的情绪预测.结果实现了体态特征的情绪分类,且以正、负性情绪为类别进行体态特征分类的情绪预测准确率达到76.92%. The features of the human behaviors were collected by camera and extracted with OpenCV in order to predict the emotions of individuals with the help of PAD scales based on previous studies.Ten subjects were requested to express their emotions through body movements,which were induced by Chinese folk music involving positive,middle and negative emotions.The states of subjects’ emotions were evaluated by PAD scales while the behaviors of subjects were collected by camera.The features of individual behaviors were extracted with the characteristic of silhouette,including the relative areas of the individual silhouettes and their rate of change.The emotions of behaviors were classified by support vector machine with the evaluation of emotional scales in order to realize the emotional prediction of the behavioral features.The results realized the emotional classification of behaviors,and the prediction accuracy rate came to 7 6.9 2% with the categories of positive and negative emotions.
作者 袁红 王波 王丽 许睦旬 YUAN Hong;WANG Bo;WANG Li;XU Mu-xun(National Laboratory of Human Factors Engineering,China Astronaut Research and Training Center,Beijing 100094,China;Department of Industrial Design,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第1期160-165,共6页 Journal of Zhejiang University:Engineering Science
基金 中国航天员中心-深圳"绿航星际"4人180天项目
关键词 情感计算 轮廓 支持向量机(SVM) 体态特征 行为分析 affective computing body silhouette support vector machine(SVM) aspectual character behavioral analysis
  • 相关文献

参考文献3

二级参考文献39

  • 1韩鸿哲,李彬,王志良,刘冀伟.基于傅立叶描述子的步态识别[J].计算机工程,2005,31(2):48-49. 被引量:21
  • 2白露,马慧,黄宇霞,罗跃嘉.中国情绪图片系统的编制——在46名中国大学生中的试用[J].中国心理卫生杂志,2005,19(11):719-722. 被引量:314
  • 3李建平,张平,代景华,王丽芳,阎克乐.五种基本情绪心脏自主神经传出活动模式[J].中国行为医学科学,2006,15(1):57-58. 被引量:20
  • 4MARTIN M. On the Induction of Mood [J]. Clinical Psychology Review, 1990, 10(6): 669 -697.
  • 5BANOS R, LLANO V, BOTELLA C, et al. Changing Induced Moods Via Virtual Reality [M] //Jsselsteijn W I, Lecture Notes in Computer Science: Persuasive Technology. Heidelberg: Springer Berlin, 2006:7 - 15.
  • 6VELTEN E J. A Laboratory Task for Induction of Mood States [J]. Behaviour Research and Therapy, 1968, 6(4): 473 - 482.
  • 7BREWER D, DOUGHTIE E B. Induction of Mood and Mood Shift [J]. Journal of Clinical Psychology, 1980, 36(1): 215 - 226.
  • 8WRIGHT J, MISCHEL W. Influence of Affect on Cognitive Social Learning Person Variables [J]. Journal of Personality and Social Psychology, 1982, 43(5): 901 -914.
  • 9BRADLEY M M, LANG P J. The International Affective Picture System (lAPS) in the Study of Emotion and Attention [M]. //Coan J A, Allen J B, Handbook of Emotion Elicitation and Assessment. New York: Oxford University Press, 2007:29 - 45.
  • 10SUTHERLAND G, NEWMAN B, RACHMAN S. Experimental Investigations of the Relations Between Mood and Intrusive Unwanted Cognitions [J].British Journal of Medical Psychology, 1982, 55(2) : 127 - 138.

共引文献2318

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部