期刊文献+

核-壳结构的氯化银/聚丙烯酰胺复合纳米粒子的制备与表征 被引量:4

Preparation and Characterization of AgCl/PAM Nanoparticle with Core-Shell Structure
下载PDF
导出
摘要 用反相微乳液作为模板制备了核-壳结构的氯化银/聚丙烯酰胺(AgCl/PAM)复合纳米粒子。透射电镜(TEM)证实复合粒子为核-壳结构,平均直径约 100 nm。扫描电子显微镜(SEM)和 X射线衍射分析显示,平均粒径约50 nm的AgCl均匀分散在聚合物中。FTIR谱图表明:AgCl与PAM之间存在较强的相互作用。用能级探测光谱(Energy Detected Spectrum,EDS)和润湿分散实验比较了不同方法改性的复合粒子的表面结构与润湿性能。 The surface of nano-AgCl modified by polyacryamide with microemulsion template has been performed. Transmission electron microscopy (TEM) analysis demonstrates that the composite is a core-shell structure of AgCl/poly acryamide ( PAM) composite nanoparticle. The particle size of the composite nanoparticle was about 100 nm. Scanning electron microscopy ( SEM) has been used to examine the morphology of solid of composite nanoparticle, which indicates that the particle size of nano-AgCl is about 50 nm in the composite. This result consistents with the X-ray analysis. FTIR analysis shows that the environment of -NH2 and > C = 0 group have changed in the composite nanoparticle, which indicate that there are chemical bonding between polyacryamide and nano-AgCl. Surface of nano-AgCl modified by butanol with microemulsion template was prepared, which is checked by energy detect spectrum (EDS). Dispersion test show that nano-AgCl/butanol can not become wet in the water, but the nano-AgCl/PAM has good wettability in the water.
作者 奚强 程时远
出处 《功能高分子学报》 CAS CSCD 2003年第4期441-445,共5页 Journal of Functional Polymers
关键词 核-壳结构 氯化银 聚丙烯酰胺 复合纳米粒子 制备 结构表征 反相微乳液 microemulsion core-shell structure nanopaticle nano-AgCl polyacryamide
  • 相关文献

参考文献13

  • 1[1]A Arnedo, S Espuleas, J M Irache. Albumin nanoparticles as carriers for a phosphodiester oligonucleotide[ J ]. Inter J Pharm, 2002, 244:59 - 72.
  • 2[2]Laigui Yu, Pingyu Zhang, Zhliang Du. Tribological behavior and structural change of the LB film of MoS2 nanoparticles coated with dialky ldithiophosphate[J]. Surface Coatings Technology, 2000, 130:110 - 115.
  • 3[3]Dong-wang Chen, Min-hung Liao. Preparation and characterization of YADH-bound magnetic nanoparticles[ J ]. J Molec Cat B: Enzymatic,2002, 16:283 - 287.
  • 4[4]Pileni M P. Nanosized particles made in colloidal assemblies[J]. Langmuir, 1997, 13:3266 -3271.
  • 5[5]Bhamro, John Chrysochoos. Photochemistry of ZnTPP induced by cadmium sulfide nanoparticles in 2-propanol[J]. J Photochem Photobio A: Chem, 1997, 111:187-191.
  • 6[6]Zs Csogor, M Nacken, H Schmidt. Modified silica particles for gene delivery[J]. Mater Sci Engng, 2003, C 23:93-97.
  • 7[7]M L Hans, A M Lowman. Biodegradable nanoparticles for drug delivery and targeting[J]. Current Opinion in Solid and Mater Sci, 2002,6:319-327.
  • 8[8]H Kachkarchi, A Ezzir, E Tronc. Surface effects in nanoparticles: application to maghemite γ -Fe2 O3 [J]. Euro Phys J, 2000, B 14:681- 689.
  • 9[9]Arcolev, Liveri J. Physico-chemistry characterization of Pd nanoparticles synthesized in W/O microemulsion [ J ]. Mater Sci Engng C: ,1998,6 (1):7-12.
  • 10[10]Warren BE. X-ray diffraction. reading[M] . MA:Addison-Wesley Pub,1969.

同被引文献68

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部