期刊文献+

Ti_3Al基合金的弹性变形能与空蚀 被引量:5

Elastic deformation energy and cavitation erosion of Ti_3Al-based alloy
下载PDF
导出
摘要 利用旋转圆盘装置研究了Ti3 Al基合金Ti 2 4Al 15Nb 1Mo的空蚀行为 ,并用洛氏硬度仪模拟空蚀过程中微射流所产生的局部载荷对Ti 2 4Al 15Nb 1Mo合金的作用 ,测量了压头加载过程中该合金吸收的总能量和弹性变形能 (选择我国水利机械常用 0Cr13Ni5Mo马氏体不锈钢作对比材料 )。结果表明 :Ti 2 4Al 15Nb 1Mo合金的抗空蚀性能优于 0Cr13Ni5Mo不锈钢 ,空蚀 40h后前者的累积体积损失量仅为 0 .5 5 1mm3 ,而后者的累积体积损失量达到2 .6 15mm3 ;在局部载荷作用下 ,Ti 2 4Al 15Nb 1Mo合金不仅有较高的加工硬化能力 ,而且有较好的弹性性能 ;在压痕试验中其弹性变形能在总变形能量中所占比例达到 1/ 3。这些性能特点使Ti 2 4Al 15Nb 1Mo合金在空蚀过程中能吸收和释放较多的冲击能量 ,延缓裂纹形成 ,减少体积损失 ,呈现良好的抗空蚀性能。 The cavitation erosion of Ti 3Al-based alloy Ti-24Al-15Nb-1Mo was investigated by using rotating disc equipment. To simulate the effect of the collapse of vapor cavities or bubbles, Rockwell hardness tester was used to exert a load on the small area of Ti-24Al-15Nb-1Mo alloy, and the total deformation energy and elastic deformation energy of the test material were determined. Martensitic stainless steel 0Cr13Ni5Mo was chosen for comparison. The results show that the cavitation erosion resistance of the Ti-24Al-15Nb-1Mo alloy is better than that of the 0Cr13Ni5Mo stainless steel. After 40 h of exposure to cavitation erosion, the cumulative volume loss of the former is only 0.551 mm 3, while that of the latter is 2.615 mm 3. Ti-24Al-15Nb-1Mo alloy has good work-hardening ability and elasticity. Its elastic deformation energy approaches 1/3 of the total deformation energy in indentation test. All these characteristics make it absorb and relieve more impact energy in cavitation erosion, thus reducing volume loss, and showing excellent cavitation erosion resistance.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2003年第3期560-564,共5页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金重点资助项目 (5 98310 30 ) 国家重点基础研究发展规划资助项目(G19990 6 5 0 )
关键词 TI3AL基合金 弹性变形能 空蚀 加工硬化 cavitation erosion Ti 3Al-based alloy energy work-hardening ability
  • 相关文献

参考文献10

  • 1[3]LI D Y. A new type of wear-resistant material: pseudo-elastic TiNi alloy[J]. Wear, 1998, 221(2): 116-123.
  • 2[4]LIANG Y N, LI S Z, JIN Y B, et al. Wear behavior of a TiNi alloy[J]. Wear, 1996, 198(1-2): 236-241.
  • 3[5]Richman R H, Rao A S, Kung D. Cavitation erosion of NiTi explosively welded to steel[J]. Wear, 1995, 181-183(1): 80-85.
  • 4[6]Wu S K, Lin H C, Yeh C H. A comparison of the cavitation erosion resistance of TiNi alloys, SUS304 stainless steel and Ni-based self-fluxing alloy[J]. Wear, 2000, 244(1-2): 85-93.
  • 5[7]CHENG F T, SHI P, MAN H C. Correlation of cavitation erosion resistance with indentation-derived properties for a NiTi alloy[J]. Scripta Materialia, 2001, 45(9): 1083-1089.
  • 6[8]LIU R, LI D Y. Indentation behaviour and wear resistance of pseudoelastic Ti-Ni alloy[J]. Materials Science and Technology, 2000, 16(3): 328-332.
  • 7[9]Howard R L, Ball A. Mechanisms of cavitation erosion of TiAl-based titanium aluminide intermetallic alloys[J]. Acta Mater, 44(8): 3157-3168.
  • 8[10]Howard R L, Ball A. The solid particle and cavitation erosion of titanium aluminide intermetallic alloys[J]. Wear, 1995, 186-187(1): 123-128.
  • 9[12]Vyas B, Preece C M. Stress produced in a solid by cavitation[J]. J Appl Phys, 1976, 47(12): 5133-5138.
  • 10[13]Momma T, Lichtarowicz A. A study of pressures and erosion produced by collapsing cavitation[J]. Wear, 1995, 186-187(2): 425-436.

同被引文献80

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部