期刊文献+

基于内分泌调节机制的机器人行为规划算法及其应用研究 被引量:7

Motion-planning Algorithm Based on Endocrine Regulation Mechanism and its Application on RoboCup
下载PDF
导出
摘要 借鉴内分泌系统对神经系统与遗传系统的高层调节机制 ,提出了一种新的基于内分泌调节机制的机器人行为规划算法 .此算法中机器人通过神经系统接受环境信息并进行行为决策 ,行为决策的效果通过一种情感学习模型进行反馈 .情感学习模型根据机器人的内、外环境状态 ,产生情感因子 (即生物激素 ) ,再由情感因子来调节神经系统的记忆和行为决策 ,最后神经系统的记忆与行为模式又由遗传系统得以继承 .该算法有效避免了神经系统复杂的自学习过程 ,同时也保证机器人有较强的自适应能力 .为了验证算法的有效性 ,本文做了机器人足球队守门员训练的仿真实验 ,结果也表明该算法具有很强的自适应学习能力 . Self-adaptation of robot in dynamic and complex environment is a hot topic in the field of intelligent control. Motivated by the high-level regulation of endocrine system to neural system and genetic system, this paper puts forward a new motion-planning algorithm based on endocrine regulation mechanism. In this algorithm, neural system receives environmental information and makes decision. The result of decision-making is fed back by emotion-learning model. The emotion-learning model produces emotional factors (hormones) based on inner and outer conditions of the robot, then uses these factors to regulate neural system, at last the memorization and behavior mode of neural system is exported to genetic environment. So the algorithm avoids the complex self-study of neural system and gets better performance. In order to prove the validity of this algorithm, we use it to control an inverted pendulum. The result also shows strong self-adaptation performance of the algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2004年第2期262-265,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目 (699710 2 2 )资助 博士点基金资助 博士点基金 (19990 3 5 82 6)资助
关键词 内分泌系统 行为规划 情感学习 神经网络 遗传算法 足球机器人 endocrine system motion planning emotion learning neural network genetic algorithm soccer robot
  • 相关文献

参考文献11

  • 1[1]Yang X, Meng M. Neural network application in robot motion planning[C]. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, 1999 611~614.
  • 2[2]Nishimura T, etc. A motion planning method for a hyper multi-joint manipulator using genetic algorithm[C]. IEEE SMC '99 Conference Proceedings, vol.4, 645~650.
  • 3[3]Bevly D M, Farritor S, Dubowsky S. Action module planning and its application to an experimental climbing robot[C]. IEEE International Conference on Robotics and Automation, Vol.4, 2000 4009~4014.
  • 4[4]Will P, Casta?o A, Shen W M. Robot Modularity for Self-Reconfiguration[C]. Proc. SPIE Sensor Fusion and Decentralized Control II, 1999, 236~245.
  • 5[5]Shen W M, Lu Y, Will P. Hormone-based control for self-reconfigurable robots[C]. Proc. Intl. Conf, Autonomous Agents, 2000,1~8.
  • 6[6]Shen W M, Salemi B, Will P. Hormone for self-reconfigurable robots[C]. Proc. Intl. Conf, Intelligent Autonomous Systems, 2000,918~925.
  • 7[7]Salemi B, Shen W. M, Will P. Hormone controlled metamorphic robots[C]. Proc. Intl. Conf, Robotics and Automation, 2001,4194~4199.
  • 8[8]Canamero D. A hormonal model of emotions for behavior control[C]. ECAL'97, 28~31.
  • 9[9]Ogata T, Sugano S. Emotional communication between humans and the autonomous robot which has the emotion model[J]. IEEE Intl. Conf, Robotics and Automation, 1999, 4, 3177~3182.
  • 10[10]Tambe M, etc. Building agent teams using an explicit teamwork model and learning[J]. Artificial Intelligence, 1999, 110: 215~239.

同被引文献93

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部