期刊文献+

基于DDQ线圈的双耦合LCL拓扑IPT系统及其抗偏移方法研究 被引量:16

Study of Dual Coupled LCL Topology IPT System Based on DDQ Coils and Its Anti-misalignment Method
下载PDF
导出
摘要 基于传统LCL补偿拓扑IPT电路,该文将LCL拓扑中用于补偿的电感替换为一对耦合线圈,既可保证电路谐振,线圈间互感又为系统提供了一个新的能量传输通道,即一种双耦合LCL拓扑IPT系统。首先介绍了DDQ线圈结构与双耦合LCL拓扑电路的特点;理论结果表明,与传统单耦合LCL拓扑IPT系统的传输效率相比,所提出的双耦合LCL系统效率提升了0.8%。此外,该文还提出了一种将LCL拓扑切换为SS补偿拓扑的方法,有效提高系统在偏移时的功率输出能力。最后,通过实验验证了该系统的有效性与抗偏移能力:正对时两对耦合线圈传输功率分别为233W和392W,效率达95.5%;在偏移0~17cm范围内,输出功率始终高于500W,传输效率始终高于88.7%。 A dual coupled LCL(DCLCL)based IPT system was proposed in this paper by replacing the resonant inductor with a pair of coupled coils on the basis of traditional LCL topology IPT system for the purpose of keeping circuit resonant and providing another power transmission channel.Firstly,the characteristics of DDQ coil’s structure and DCLCL circuit were analyzed.In addition,the efficiency of the system is 0.8%higher than that of the traditional single coupled LCL(SCLCL)based IPT system.Besides,a method of switching compensation topologies from LCL to SS was proposed to improve output power against misalignment.The anti-misalignment performance of the proposed IPT system were verified by experiments showing that the transmission powers of the two coupled coils are 230 W and 395 W respectively at 95.5%system efficiency.The output power is always greater than 500 W with the efficiency higher than88.7%when the coil misalignment ranges from 0 to 17 cm.
作者 任洁 周坤卓 李宏超 刘野然 麦瑞坤 REN Jie;ZHOU Kunzhuo;LI Hongchao;LIU Yeran;MAI Ruikun(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 610031,Sichuan Province,China)
出处 《中国电机工程学报》 EI CSCD 北大核心 2019年第9期2778-2788,共11页 Proceedings of the CSEE
基金 国家自然科学基金项目(51677155) 四川省青年科技基金项目(2016JQ0033) 中央高校基本科研业务费专项资金(2682017QY01)~~
关键词 LCL拓扑 感应电能传输 功率分配 效率提升 抗偏移 LCL topology inductive power transfer(IPT) power allocation efficiency optimization anti-misalignment
  • 相关文献

参考文献8

二级参考文献68

  • 1刘志宇,都东,齐国光.感应充电技术的发展与应用[J].电力电子技术,2004,38(3):92-94. 被引量:28
  • 2王璐,陈敏,徐德鸿.磁浮列车非接触紧急供电系统的工程化设计[J].中国电机工程学报,2007,27(18):67-70. 被引量:33
  • 3Elliott G A J, Covic G A, Kacprzak D, et al. A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3389-3391.
  • 4Sato F, Nomoto T, Kano G, et al. A new contactless power-signal transmission device for implanted functional electrical stimulation(FES)[J]. IEEE Transactions on Magnetics, 2004, 40(4): 2964-2966.
  • 5Choi B, Nho J, Cha H, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140-147.
  • 6Adachi S I, Sato F, Kikuehi S, et al. Consideration of contactless power station with selective xcitation to moving robot[J]. IEEE Transactions on Magnetics, 1999, 35(2): 3583-3585.
  • 7Qualcomm Halo. Wireless charging for electric vehicles [EB/OL]. USA. Qualcomm, 201112013-06-20]. http:// www.qualcomm.com/solutions/wireless-charging/qualcom m-halo#n_home-intro.
  • 8Sallan J, Villa J L, Llombart A, otal. Optimal design of ICPT systems applied to electric vehicle battery charge [J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 2140-2149.
  • 9Xun Liu, Hui S Y. Optimal design of a hybrid winding structure for planar contactless battery charging platform[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 455-463.
  • 10Hu A P. Selected resonant converters for IPT power supplies[D]. Auckland: The University of Auckland, 2001.

共引文献332

同被引文献98

引证文献16

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部