期刊文献+

集成基因表达规划法应用于动态股票交易策略探勘之研究 被引量:3

The Mining of Dynamic Stock Trading Strategies Based on Ensemble Gene Expression Programming
原文传递
导出
摘要 本研究主要目的乃运用基因表达规划法(Gene Expression Programming,GEP),加入集成学习(Ensemble Learning)与权重机制,以及设计动态时间天期技术指针的机制,期望提升程序交易(Program Trading)领域中交易策略设计的弹性与效果。因此,以台湾三家股票上市公司为实验目标,期望检验这个智能型的集成基因表达规划法(Ensemble-GEP,E-GEP)的交易策略系统,是否能帮助投资人发展出好的交易策略,提升风险报酬比率。根据实验结果:(1)使用动态天期技术指针的交易策略确实优于固定天期的交易策略,更能捕捉到交易讯号,获致较高的夏普率(Sharpe Ratio)与投资报酬率;(2)E-GEP交易系统获得较高的夏普率,优于使用单一分类器的模型(SGEP),显示其能提升风险报酬比率;本研究研发这套创新的交易策略系统,可建构在MultiCharts.NET程序交易平台,提供一个学术与实务应用结合的具体典范。 Genetic expression programming,ensemble learning,weights and dynamic technical indexes are used in the research.expceting to enhance the flexibility and performance of trading strategic design in the field of program trading.Therefore,three exchange listed companies in Taiwan are used as experimental subject,expecting to examine the trading strategic model of innovative Ensemble-Gene Expression Programming(E-GEP)and help investors find the suitable trading strategies to increase the return of investment in the stock market.The results of the experiments Show that:(1)compared with the normal technical indexes,the dynamic technical indexes are better to find the appropriate trading strategies and get higher Sharpe ratio and return of investment;(2)using ensemble method are the necessary complement to using single classifier,and the former can get the higher Sharpe ratio.
出处 《中国管理科学》 CSSCI 北大核心 2015年第S1期510-517,共8页 Chinese Journal of Management Science
关键词 基因表达规划法 集成方法 股票交易策略 技术分析 gene expression programming ensemble methods sock trading strategy technical analysis
  • 相关文献

参考文献19

  • 1Hsieh L F,Hsieh S C,Tai P H.Optimize stock variation prediction via DOE and BPNN 8th Intemational,Supply Chain. Proceedings of Management and Information Systems (SCMIS) . 2010
  • 2Huang C H,Yang C B,Chen H H.Trading strategy mining with gene expression programming. Proceedings of the20131nternational Conference on Applied Mathematics and Computational Methods in Engineering . 2013
  • 3Jung H J,Aggarwal K A.Binary stock event model for stock trends forecasting:Forecasting stock trends via a simple and accurate approach with machine learning. proceedings of 11th International Conference on Intelligent Systems Design and Application . 2011
  • 4钱晓山,阳春华.改进基因表达式编程在股票中的研究与应用[J].智能系统学报,2010,5(4):303-307. 被引量:5
  • 5Mei-Chih Chen,Chang-Li Lin,An-Pin Chen.??Constructing a dynamic stock portfolio decision-making assistance model: using the Taiwan 50 Index constituents as an example(J)Soft Computing . 2007 (12)
  • 6Yoav Freund,Robert E Schapire.A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[J]. Journal of Computer and System Sciences . 1997 (1)
  • 7Lawrence K,Saul W,Leon B. proceedings of the 17th Conferenceon Advance In Neural Information Processing Systems . 2004
  • 8Leo Breiman.Bagging predictors[J]. Machine Learning . 1996 (2)
  • 9Han Kuk-Hyun,Kim Jong-Hwan.Genetic quantum algorithm and its application to combinatorial optimization problem. IEEE Proceedings of the 2000 Congress on Evolutionary Computation . 2000
  • 10Freund Y,Schapire RE.A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence . 1999

二级参考文献11

  • 1段磊,唐常杰,左劼,陈宇,钟义啸,元昌安.基于基因表达式编程的抗噪声数据的函数挖掘方法[J].计算机研究与发展,2004,41(10):1684-1689. 被引量:39
  • 2元昌安,唐常杰,左劼,谢方军,陈安龙,胡建军.基于基因表达式编程的函数挖掘——收敛性分析与残差制导进化算法[J].四川大学学报(工程科学版),2004,36(6):100-105. 被引量:44
  • 3张克俊.求解反问题的改进的基因表达式编程研究[D].南昌:江西理工大学,2006.
  • 4FERREIA C.Gene expression programming:a new adaptive algorithm for solving problems[J].Complex Systems,2001,13(2):87-129.
  • 5MITCHELL M.An introduction to genetic algorithms[M].Cambridge:MIT Press,1996:143-164.
  • 6FERREIRA C.Gene expression programming:mathematical modeling by an artificial intelligence[M].2nd ed.Cambridge:MIT Press,Massachusetts,London,England Springer,2006:82-85.
  • 7ZUO Jie,TANG Changjie,LI Chuan,et al.Time series prediction based on gene expression programming[C] //International Conference for Web Information.Berling:Springer Verlag,2004:55-64.
  • 8ECONOMIC W H.Prediction using neural networks:the case of IBM daily stock returns[C] //IEEE International Conference on Neural Network.[S.l.] ,1988:451-458.
  • 9BERGERSON K,WUNSCH D C.A commodity trading model based on a neural network-expert system Hybrid[C] //Proceedings of the IEEE International Conference on Neural Network.Seattle,1991:1289-1293.
  • 10PESARAN M H,TIMMERMANN A.A recursive modeling approach to predicting UK stock[C] //Economic Journal,Blackwell Publishing.Edward,2000:159-191.

共引文献11

同被引文献12

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部