期刊文献+

中小企业与银行间信贷博弈的随机均衡模型与算法 被引量:1

Stochastic Equilibrium Model and Algorithm of Credit Loan Game between Minor Enterprises and Banks
原文传递
导出
摘要 本文通过构建随机均衡模型对目前普遍存在的中小企业信贷问题进行了银企双方博弈决策分析。首先选择分别选择借款金额、借款期限和贷款利率作为企业和银行的决策变量并构建信贷双方博弈的随机均衡模型,然后利用随机机会约束规划理论对该随机均衡模型进行转化,给出最优均衡决策的条件,并设计遗传算法对其求解,最后通过对模型中参量进行相应的赋值,给出了一个信贷博弈算例,通过对计算结果的分析,可以看出该算法的有效性和合理性。 The credit loan problem between minor enterprises and banks by building a stochastic equilibrium model is researched in this paper. Firstly the loan amount,loan term and loan interest rate are selected as the decision variables of the enterprise and the bank,and a stochastic equilibrium model of the credit game is constructed;Then the stochastic equilibrium model by using stochastic chance constrained programming theory is transformed to give the conditions of optimal equilibrium decision,and a genetic algorithm is designed to solve the problem. Finally,by assigning values to parameters in the model,giving a credit loan game as an example,by analyzing the results,it can be seen that the algorithm is effective and reasonable.
作者 宿洁 连捷
出处 《中国管理科学》 CSSCI 北大核心 2016年第S1期525-530,共6页 Chinese Journal of Management Science
关键词 银企借贷博弈 随机均衡模型 随机机会约束规划 最优均衡决策 遗传算法 credit loan game stochastic equilibrium model stochastic chance constrained programming optimal decision genetic algorithm
  • 相关文献

参考文献6

二级参考文献42

  • 1曾宇平.上市公司股权融资与投资者行为博弈分析[J].商业研究,2006(17):167-168. 被引量:2
  • 2张维迎.博弈论与信息经济学[M].上海:上海三联书店、上海人民出版社,2003..
  • 3[法]泰勒尔.产业组织理论[M].北京:中国人民大学出版社,1997..
  • 4王瑞华.商业银行信贷风险的博弈策略[J].财政金融,2006.
  • 5Luo Z Q, Pang J S, Ralph D. Mathematical Programs with Equilibrium Constraints [M]. Cambridge: Cambridge University Press. 1996.
  • 6Outrata J V, Kovara M, Zowe J. Nonsmooth approach to optimization problems with equi- librium constraints [M]//Noneonvex Optimization and its Applications, Dordreeht: Kluwer Aeademie Publishers, 1998.
  • 7Flegel M L, Kanzow C. Abadie-Type constraint qualification for mathematical programs with equilibrium constraints [J]. Journal of Optimization Theory and Applications, 2005, 124(3): 595-614.
  • 8Chen Y, Florian M. The nonlinear bilevel programming problem: formulations, regularity, and optimality conditions [J]. Optimization, i995, 32: 193-209.
  • 9Bazaraa M S, Sherali H D, Shetty C M. Nonliner Programming: Theory and Algorithms (3rd ed.) [M]. New York: John Wiley & Sons, 2006.
  • 10Fujiwara O, Han S P, Mangasarian O L. Local duality of nonlinear programs [J]. SIAM Journal on Control and Optimization, 1984, 22: 162-169.

共引文献9

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部