期刊文献+

基于CVaR投资组合优化问题的非光滑优化方法 被引量:9

A Nonsmooth Optimization Method for Portfolio Optimization Based on CVaR
原文传递
导出
摘要 对选定的风险资产进行组合投资,以条件风险价值(CVaR)作为度量风险的工具,建立单期投资组合优化问题的CVaR模型。目标函数中含有多重积分与极大值函数,首先利用蒙特卡洛模拟产生情景矩阵将多重积分计算转化成求和运算,之后目标函数为分片光滑(非光滑)函数,设计相应的非光滑优化方法并给出其收敛性分析。初步的数值试验表明了本文算法的有效性。 Portfolio selection is an important issue in finance.It aims to determine how to allocate one's wealth among agiven asset pool to maximize the return and minimize the risk.Different from the accepted return,there are many risk measures.Nevertheless,among all risk measures,conditional value-at-risk(CVaR)is widely accepted,and in this paper it is adopted.As there is a nonsmooth term in the expression of CVaR,an optimization problem containing CVaR cannot be solved by classical algorithms based on gradient.Though there is an extensive literature on tackling optimization problem containing CVaR,such as linear programming method,intelligent optimization algorithms and nonsmooth optimization methods,etc,literatures on solving this problem by bundle method are scarce.And the literature on this aspect in this paper is enriched.That is,a bundle method is investigated for portfolio selection problem based on CVaR.Specifically,a single-period portfolio optimization model,which takes CVaR as the objective function coupled with a prescribed minimal level of the expected return,is formulated at first.By exploring the structure of the model,aproximal bundle method is proposed.At the same time,the convergence analysis of the method is given as well.Finally,an illustrative numerical example is presented,where assets' returns are assumed to be normally distributed and their mean and the covariance matrix known.By Monte Carlo sampling method,several scenario matrices are generated.Then,not only the bundle method,but linear programming method,subgradient algorithm,genetic algorithm and smoothing method are adopted to solve the model as well.By comparing the results of the different methods,conclusions are drawn:linear programming method and subgradient algorithm are inefficient,genetic algorithm,smoothing method and bundle method are feasible.Further,among three feasible algorithms,bundle method takes the least amount of CPU time.So,the proximal bundle method is efficient and can be regarded as a new solution method for not only portfolio optimization problem but other problems containing CVaR.
作者 张清叶 高岩
出处 《中国管理科学》 CSSCI CSCD 北大核心 2017年第10期11-19,共9页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(11171221) 高等学校博士学科点专项科研基金项目(20123120110004) 上海市一流学科项目(XTKX2012)
关键词 投资组合 条件风险价值 非光滑优化 束方法 portfolio Conditional Valu-at-Risk(CVaR) nonsmooth optimization bundle method
  • 相关文献

参考文献6

二级参考文献93

  • 1郭文旌,胡奇英.不确定终止时间的多阶段最优投资组合[J].管理科学学报,2005,8(2):13-19. 被引量:23
  • 2金秀,黄小原,马丽丽.基于VaR的多阶段金融资产配置模型[J].中国管理科学,2005,13(4):13-16. 被引量:7
  • 3刘小茂,田立.VaR与CVaR的对比研究及实证分析[J].华中科技大学学报(自然科学版),2005,33(10):112-114. 被引量:17
  • 4菲利普乔瑞.VaR:风险价值--金融风险管理新标准[M].中信出版社,2001..
  • 5王春峰.金融市场风险管理--VaR方法[M].天津:天津大学出版社,2000..
  • 6菲利普.乔瑞(PhilippeJorion).风险价值[M].陈跃等译.北京:中信出版社.2005.
  • 7R.T.Rockafellar,S.Uryasev. Optimization of Conditional Value-at- Risk[J]. Journal of Risk,2000,2(3).
  • 8R.T.Rockafellar,S.Uryasev. Conditional Value-at-Risk for General Loss Distribution[J]. Journal of Banking and Finance,2002,26(4).
  • 9Jong-Shi Pang,Sven Leyffer. On the Global Minimization of the Value-at-Risk[J]. Optimization Methods and Software,2004,19(5).
  • 10皮埃特罗潘泽 维普K班塞尔.用VaR度量市场风险[M].北京:机械工业出版社,2001..

共引文献64

同被引文献70

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部