摘要
基于激光雷达的航天器位姿估计技术是当前在轨服务研究热点。针对失效航天器位姿估计,将通用的图优化SLAM技术应用到空间非合作目标的研究中。为解决SLAM算法在动态场景中产生累积误差问题,利用失效航天器自身运动特点,提出一种基于先验子图检测改进的SLAM算法。在该算法中,通过激光雷达和惯性测量单元分别采集失效航天器及周围环境的点云数据、服务航天器的运动信息,构建出服务场景下航天器的相对位姿图;再采用先验子图检测方法建立不连续的位姿节点间的约束关系;最后用约束信息对位姿图进行优化。仿真结果表明,相较于通用的SLAM算法的位姿估计,该方法减小了累积误差,提高了相对位姿估计精度,可以为后期的导航、控制等在轨任务提供信息。
The technology of estimating position and pose of spacecraft based on laser lidar is a research hotspot of on-orbit services. For the position and pose estimation of failure spacecraft, the technology of general graph-based optimization SLAM was applied to the research of noncooperative target in space. In order to solve the problem of accumulative error generated in the dynamic scene, an improved SLAM algorithm based on detection of prior submap according to the characteristics of failure spacecraft was proposed. In this algorithm, laser lidar and inertia measurement unit were used to sample the point cloud data of failure spacecraft as well as the environment and the movement information of service spacecraft, to construct a relative pose graph of service scenario. Then the method of detecting prior submap was used to generate the constraints of discontinuous poses. At last, the constraints information was used to optimize the result of pose graph. The simulation result shows that the method decreases the cumulative deviation and improves precision of relative position and pose estimation compared to general SLAM algorithm, providing information for on-orbit tasks such as navigation and controlling.
作者
康国华
马云
乔思元
郭玉洁
金晨迪
KANG Guohua;MA Yun;QIAO Siyuan;GUO Yujie;JIN Chendi(Research Center of Microsatellites,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处
《中国空间科学技术》
EI
CSCD
北大核心
2019年第1期1-10,共10页
Chinese Space Science and Technology
基金
空间智能控制技术重点实验室开放基金资助项目(ZDSYS-2017-01)
中央高校基本科研业务费专项资金资助(No.NZ2016111)
关键词
控制工程
航天器位姿
子图检测
SLAM
激光雷达
图优化
control engineering
spacecraft position and pose
submap detecting
simultaneous localization and mapping
laser lidar
graph optimization