摘要
Tree peony seeds are rich in α-linolenic acid(ALA), and the peony seed oil is now being produced in China. Paeonia ostii is the most widely used tree peony species for oil extraction, which is commercially called Fengdan and treated as a single cultivar. Here, 50 P. ostii individuals from the same population in northern China were randomly selected for fatty acids(FAs) analysis. Thirteen FAs were isolated, and the most abundant five were palmitic acid(5.31–6.99%), stearic acid(1.22–2.76%), oleic acid(18.78–28.15%), linoleic acid(11.86–26.10%), and ALA(41.11–57.51%). There were significant individual differences of plants in FA quality and quantity and the linoleic acid content in Plant No. 48 even exceeded the scope of 1–99%. Further statistical analysis indicated that most of the individual FAs, saturated FAs, unsaturated FAs, and total FAs levels showed significant positive correlations to each other, whereas the seed yield per plant was independent and not correlated to the factors mentioned above. Ward’s hierarchical clustering results grouped the 50 plants into four clusters based on FA contents and seed yield, and the seven plants in Cluster IV were identified as good candidates for oil production. Our results confirmed that the individual differences did occur in P. ostii and Fengdan cannot be simply treated as one uniform cultivar. Also, these results may help simplify the selection of plants for oil peony breeding and accelerate the development of the oil peony industry.
Tree peony seeds are rich in α-linolenic acid(ALA), and the peony seed oil is now being produced in China. Paeonia ostii is the most widely used tree peony species for oil extraction, which is commercially called Fengdan and treated as a single cultivar. Here, 50 P. ostii individuals from the same population in northern China were randomly selected for fatty acids(FAs) analysis. Thirteen FAs were isolated, and the most abundant five were palmitic acid(5.31–6.99%), stearic acid(1.22–2.76%), oleic acid(18.78–28.15%), linoleic acid(11.86–26.10%), and ALA(41.11–57.51%). There were significant individual differences of plants in FA quality and quantity and the linoleic acid content in Plant No. 48 even exceeded the scope of 1–99%. Further statistical analysis indicated that most of the individual FAs, saturated FAs, unsaturated FAs, and total FAs levels showed significant positive correlations to each other, whereas the seed yield per plant was independent and not correlated to the factors mentioned above. Ward's hierarchical clustering results grouped the 50 plants into four clusters based on FA contents and seed yield, and the seven plants in Cluster IV were identified as good candidates for oil production. Our results confirmed that the individual differences did occur in P. ostii and Fengdan cannot be simply treated as one uniform cultivar. Also, these results may help simplify the selection of plants for oil peony breeding and accelerate the development of the oil peony industry.
基金
funded by the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS)
the Natural Science Foundation of China (31572156, 31501800)
the Special Fund for Agro-scientific Research in the Public Interest, China (201203071)
the Beijing Municipal Science and Technology Project, China (D161100001916004)