期刊文献+

Inhibition of KU70 and KU80 by CRISPR interference,not NgAgo interference,increases the efficiency of homologous recombination in pig fetal fibroblasts 被引量:2

Inhibition of KU70 and KU80 by CRISPR interference,not NgAgo interference,increases the efficiency of homologous recombination in pig fetal fibroblasts
下载PDF
导出
摘要 Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the efficiency of HR, multiple CRISPR interference(CRISPRi) and Natronobacterium gregoryi Argonaute(NgAgo) interference(NgAgoi) systems have been designed for the knockdown of NHEJ key molecules, KU70, KU80, polynucleotide kinase/phosphatase(PNKP), DNA ligase IV(LIG4), and NHEJ1. Suppression of KU70 and KU80 by CRISPRi dramatically promoted(P<0.05) the efficiency of HR to 1.85-and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase(P>0.05) HR efficiency. Interestingly, although the NgAgoi system significantly suppressed(P<0.05) KU70, KU80, PNKP, LIG4, and NHEJ1 expression, it did not improve(P>0.05) HR efficiency in primary fetal fibroblasts. Our result showed that both NgAgo and catalytically inactive Cas9(dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo. Non-homologous end-joining(NHEJ) is a predominant pathway for the repair of DNA double-strand breaks(DSB). It inhibits the efficiency of homologous recombination(HR) by competing for DSB targets. To improve the efficiency of HR, multiple CRISPR interference(CRISPRi) and Natronobacterium gregoryi Argonaute(NgAgo) interference(NgAgoi) systems have been designed for the knockdown of NHEJ key molecules, KU70, KU80, polynucleotide kinase/phosphatase(PNKP), DNA ligase IV(LIG4), and NHEJ1. Suppression of KU70 and KU80 by CRISPRi dramatically promoted(P<0.05) the efficiency of HR to 1.85-and 1.58-fold, respectively, whereas knockdown of PNKP, LIG4, and NHEJ1 repair factors did not significantly increase(P>0.05) HR efficiency. Interestingly, although the NgAgoi system significantly suppressed(P<0.05) KU70, KU80, PNKP, LIG4, and NHEJ1 expression, it did not improve(P>0.05) HR efficiency in primary fetal fibroblasts. Our result showed that both NgAgo and catalytically inactive Cas9(dCas9) could interfere with the expression of target genes, but the downstream factors appear to be more active following CRISPR-mediated interference than that of NgAgo.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期438-448,共11页 农业科学学报(英文版)
基金 supported by the National Science and Technology Major Project for Breeding of New Transgenic Organisms, China (2016ZX08006002) the Guangdong Province "Flying Sail Program" Postdoctoral Foundation, China (2016)
关键词 HOMOLOGOUS recombination non-homologous end-joining CRISPRi NgAgoi KU70 KU80 homologous recombination non-homologous end-joining CRISPRi NgAgoi KU70 KU80
  • 相关文献

参考文献1

共引文献12

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部