期刊文献+

Domain boundaries in silicene:Density functional theory calculations on electronic properties

Domain boundaries in silicene:Density functional theory calculations on electronic properties
下载PDF
导出
摘要 By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices. By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.
机构地区 Institute of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期116-119,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.61390501 and 51325204) the National Basic Research Program of China(Grant Nos.2011CB808401 and 2011CB921702) the Tainjin Supercomputing Center,Chinese Academy of Sciences
关键词 domain boundaries SILICENE line defect density functional theory domain boundaries,silicene,line defect,density functional theory
  • 相关文献

参考文献26

  • 1Chen L,Feng B,Wu K. Applied Physics Letters . 2013
  • 2Perdew JP,Burke K,Ernzerhof M.Generalized gradient approximation made simple. Physical Review . 1996
  • 3Samsonidze, Georgii G.,Samsonidze, Guram G.,Yakobson, Boris I.Kinetic theory of symmetry-dependent strength in carbon nanotubes. Physical Review . 2002
  • 4Kara, Abdelkader,Enriquez, Hanna,Seitsonen, Ari P.,Lew Yan Voon, L.C.,Vizzini, Sébastien,Aufray, Bernard,Oughaddou, Hamid.A review on silicene - New candidate for electronics. Surface Science . 2012
  • 5Peplow M. Nature . 2015
  • 6Matin Amani,Robert A Burke,Robert M Proie,Madan Dubey.??Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS<SUB>2</SUB> and graphene(J)Nanotechnology . 2015 (11)
  • 7Ni Z,Zhong H,Jiang X,Quhe R,Luo G,Wang Y,Ye M,Yang J,Shi J,Lu J. Nanoscale . 2014
  • 8Gao J,Zhang J,Liu H,Zhang Q,Zhao J. Nanoscale . 2013
  • 9Li S,Wu Y,Tu Y,Wang Y,Jiang T,Liu W,Zhao Y. Science Reports . 2015
  • 10Dong H,Fang D,Gong B,Zhang Y,Zhang E,Zhang S. Journal of Applied Physiology . 2015

二级参考文献31

  • 1Castro Neto A H, Guinea F, Peres N M R et al. Rev. Mod. Phys., 2009, 81:109.
  • 2Guzman-Verri G G, Voon L C L. Phys. Rev. B, 2007, 76: 075131.
  • 3Takeda K, Shiraishi K. Phys. Rev. B, 1994, 50:14916.
  • 4Cahangirov S, Topsakal M, Akturk E et al. Phys. Rev. Lett., 2009, 102:236804.
  • 5Liu C C, Feng W X, YaoY G. Phys. Rev. Lett., 2011, 107: 076802.
  • 6Liu C C, Jiang H, Yao Y G. Phys. Rev. B, 2011, 84:195430.
  • 7Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95: 226801.
  • 8Tsai W F, Huang C Y, Chang T R et al. Nature Commun.,2013, 4:1500.
  • 9EzawaM. Phys. Rev. Lett., 2012, 109:055502.
  • 10Ezawa M. Phys. Rev. Lett., 2013, 110.. 026603.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部