摘要
Visible converted emissions produced at an excitation of 286 nm in Zn Nb2O6 ceramics doped with rare-earth ions(RE= Eu3+, Tm3+, Er3+or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:Zn Nb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped Zn Nb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared Nb O6 groups. Upon 286-nm excitation, Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of5D0→7FJ(J = 1–4)(Eu3+),1G4→3H6(Tm3+), and2H11/2/4S3/2→4I15/2(Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6are(0.50, 0.31),(0.14, 0.19), and(0.29, 0.56), respectively. RE ionco-doped Zn Nb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:Zn Nb2O6,Eu/Er:Zn Nb2O6, and Tm/Er:ZnNb2O6 were calculated to be(0.29, 0.24),(0.45, 0.37), and(0.17, 0.25).
Visible converted emissions produced at an excitation of 286 nm in Zn Nb2O6 ceramics doped with rare-earth ions(RE= Eu3+, Tm3+, Er3+or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:Zn Nb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped Zn Nb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons' recombination of the efficient luminescence centers of edge-shared Nb O6 groups. Upon 286-nm excitation, Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of5D0→7FJ(J = 1–4)(Eu3+),1G4→3H6(Tm3+), and2H11/2/4S3/2→4I15/2(Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:Zn Nb2O6, Tm:Zn Nb2O6, and Er:Zn Nb2O6are(0.50, 0.31),(0.14, 0.19), and(0.29, 0.56), respectively. RE ionco-doped Zn Nb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:Zn Nb2O6,Eu/Er:Zn Nb2O6, and Tm/Er:ZnNb2O6 were calculated to be(0.29, 0.24),(0.45, 0.37), and(0.17, 0.25).
基金
supported by the National Natural Science Foundation of China(Grant Nos.10572155 and 10732100)
the Research Fund for the Doctoral Program of Ministry of Education,China(Grant No.20130171130003)