摘要
The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide(In Sb) and indium arsenide(In As) in an intense terahertz(THz) field are studied by using the method of ensemble Monte Carlo(EMC)at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 k V/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in In Sb, and only 5 THz in In As, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in In Sb, while impact ionization and intervalley scattering work together in In As. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field.
The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide(In Sb) and indium arsenide(In As) in an intense terahertz(THz) field are studied by using the method of ensemble Monte Carlo(EMC)at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 k V/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in In Sb, and only 5 THz in In As, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in In Sb, while impact ionization and intervalley scattering work together in In As. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11574105,61177095,61405063,and 61475054)
the Natural Science Foundation of Hubei Province,China(Grant Nos.2012FFA074 and 2013BAA002)
the Wuhan Municipal Applied Basic Research Project,China(Grant No.20140101010009)
the Fundamental Research Funds for the Central Universities,China(Grant Nos.2013KXYQ004 and 2014ZZGH021)