期刊文献+

Characteristics of cylindrical surrounding-gate GaAs_xSb_(1-x)/In_yGa_(1-y)As heterojunction tunneling field-effect transistors

Characteristics of cylindrical surrounding-gate GaAs_xSb_(1-x)/In_yGa_(1-y)As heterojunction tunneling field-effect transistors
下载PDF
导出
摘要 A Ⅲ-Ⅴ heterojunction tunneling field-effect transistor(TFET) can enhance the on-state current effectively,and GaAsSb/InGaAs heterojunction exhibits better performance with the adjustable band alignment by modulating the alloy composition.In this paper,the performance of the cylindrical surrounding-gate GaAsSb/InGaAs heterojunction TFET with gate-drain underlap is investigated by numerical simulation.We validate that reducing drain doping concentration and increasing gate-drain underlap could be effective ways to reduce the off-state current and subthreshold swing(SS),while increasing source doping concentration and adjusting the composition of GaAsSbInGaAs can improve the on-state current.In addition,the resonant TFET based on GaAsSb/InGaAs is also studied,and the result shows that the minimum and average of SS reach 11 mV/decade and 20 mV/decade for five decades of drain current,respectively,and is much superior to the conventional TFET. A Ⅲ-Ⅴ heterojunction tunneling field-effect transistor(TFET) can enhance the on-state current effectively,and GaAs_xSb_1_x/In_yGa_1_yAs heterojunction exhibits better performance with the adjustable band alignment by modulating the alloy composition.In this paper,the performance of the cylindrical surrounding-gate GaAs_xSb_1_x/In_yGa_1_yAs heterojunction TFET with gate-drain underlap is investigated by numerical simulation.We validate that reducing drain doping concentration and increasing gate-drain underlap could be effective ways to reduce the off-state current and subthreshold swing(SS),while increasing source doping concentration and adjusting the composition of GaAs_xSb_1_xIn_yGa_1_yAs can improve the on-state current.In addition,the resonant TFET based on GaAs_xSb_1_x/In_yGa_1_yAs is also studied,and the result shows that the minimum and average of SS reach 11 mV/decade and 20 mV/decade for five decades of drain current,respectively,and is much superior to the conventional TFET.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第10期513-517,共5页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.61176038 and 61474093) the Science and Technology Planning Project of Guangdong Province,China(Grant No.2015A010103002) the Technology Development Program of Shaanxi Province,China(Grant No.2016GY-075)
关键词 tunneling field-effect transistor surrounding-gate subthreshold swing resonant tunneling tunneling field-effect transistor surrounding-gate subthreshold swing resonant tunneling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部