摘要
We study the relations between solitons of nonlinear Schro¨dinger equation and eigen-states of linear Schro¨dinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in the quantum wells. We show that the vector solitons for the coupled system with attractive interactions correspond to the identical eigen-states with the ones of the coupled systems with repulsive interactions. Although their energy eigenvalues seem to be different, they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases.Meanwhile, we demonstrate that soliton solutions in nonlinear systems can also be used to solve the eigen-problems of quantum wells. As an example, we present the eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having parity–time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as a water wave tank, nonlinear fiber, Bose–Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another way to understand the stability of solitons in nonlinear Schro¨dinger equation described systems, in contrast to the balance between dispersion and nonlinearity.
We study the relations between solitons of nonlinear Schro¨dinger equation and eigen-states of linear Schro¨dinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in the quantum wells. We show that the vector solitons for the coupled system with attractive interactions correspond to the identical eigen-states with the ones of the coupled systems with repulsive interactions. Although their energy eigenvalues seem to be different, they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases.Meanwhile, we demonstrate that soliton solutions in nonlinear systems can also be used to solve the eigen-problems of quantum wells. As an example, we present the eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having parity–time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as a water wave tank, nonlinear fiber, Bose–Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another way to understand the stability of solitons in nonlinear Schro¨dinger equation described systems, in contrast to the balance between dispersion and nonlinearity.
作者
Li-Chen Zhao
Zhan-Ying Yang
Wen-Li Yang
赵立臣;杨战营;杨文力(School of Physics,Northwest University,Xi’an 710069,China;Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710069,China;Institute of Modern Physics,Northwest University,Xi’an 710069,China)
基金
The National Natural Science Foundation of China(Grant No.11775176)
the Basic Research Program of Natural Science of Shaanxi Province,China(Grant No.2018KJXX-094)
the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province,China(Grant No.2017KCT-12)
the Major Basic Research Program of Natural Science of Shaanxi Province,China(Grant No.2017ZDJC-32)