期刊文献+

Effect of exit location on flow of mice under emergency condition 被引量:2

Effect of exit location on flow of mice under emergency condition
下载PDF
导出
摘要 The evacuation of crowds in a building has always emerged as a vital issue in many accidents. The geometrical structure of a room, especially the exit design has a great influence on crowd evacuation under emergency conditions. In this paper, the effect of exit location of a room on crowd evacuation in an emergency is investigated with mice. Two different exits are set in a rectangular chamber. One is located in the middle of a wall(middle-exit) and the other is at the corner of the chamber(corner-exit). Arching and clogging are observed in the flow of mice. The result based on the escape trajectories of mice shows a dynamic balance in the arch near the exit wherever the exit is located. We demonstrate that the occupant position in the arch has an effect on the escape sequence of mice. At a low stimulation level, the narrow middle-exit is more effective in increasing the flow rate of mice than the narrow corner-exit. However, the opposite result appears when the exit becomes wider. At a high stimulation level, the effect of exit location on flow of mice tends to be weakened. The results suggest that the specific level of stimulation needs to be taken into account when optimizing the evacuation efficiency of a crowd through the geometrical structure of a room. The evacuation of crowds in a building has always emerged as a vital issue in many accidents. The geometrical structure of a room, especially the exit design has a great influence on crowd evacuation under emergency conditions. In this paper, the effect of exit location of a room on crowd evacuation in an emergency is investigated with mice. Two different exits are set in a rectangular chamber. One is located in the middle of a wall(middle-exit) and the other is at the corner of the chamber(corner-exit). Arching and clogging are observed in the flow of mice. The result based on the escape trajectories of mice shows a dynamic balance in the arch near the exit wherever the exit is located. We demonstrate that the occupant position in the arch has an effect on the escape sequence of mice. At a low stimulation level, the narrow middle-exit is more effective in increasing the flow rate of mice than the narrow corner-exit. However, the opposite result appears when the exit becomes wider. At a high stimulation level, the effect of exit location on flow of mice tends to be weakened. The results suggest that the specific level of stimulation needs to be taken into account when optimizing the evacuation efficiency of a crowd through the geometrical structure of a room.
作者 Teng Zhang Shen-Shi Huang Xue-Lin Zhang Shou-Xiang Lu Chang-Hai Li 张腾;黄申石;张学林;陆守香;黎昌海(State Key Laboratory of Fire Science,University of Science and Technology of China,Hefei 230027,China;School of Civil Engineering,Chongqing Three Gorges University,Chongqing 404000,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期290-299,共10页 中国物理B(英文版)
基金 Project supported by the National Key Research and Development Program of China(Grant No.2016YFB1200404)
关键词 EXIT LOCATION EVACUATION MICE STIMULATION level exit location evacuation mice stimulation level
  • 相关文献

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部