摘要
High intensity γ-ray source can be obtained through resonance reaction induced by protons. In this work, the possibility of using such high intensity MeV-range γ-ray source to transmute nuclear waste is investigated through Mont Carlo simulation.197 Au(γ, n)196Au experiment is performed to obtain the transmutation rate and compared with the simulation result. If the current of the proton beam is 10 mA at the resonance energy of 441 keV, with the γ photons emitted from7 Li(p, γ)8 Be, then the corresponding transmutation yield for129I in 2π direction can reach 9.4 × 109 per hour. The result is compared with that of LCS γ-ray source.
High intensity γ-ray source can be obtained through resonance reaction induced by protons. In this work, the possibility of using such high intensity MeV-range γ-ray source to transmute nuclear waste is investigated through Mont Carlo simulation.197 Au(γ, n)196Au experiment is performed to obtain the transmutation rate and compared with the simulation result. If the current of the proton beam is 10 mA at the resonance energy of 441 keV, with the γ photons emitted from7 Li(p, γ)8 Be, then the corresponding transmutation yield for129I in 2π direction can reach 9.4 × 109 per hour. The result is compared with that of LCS γ-ray source.
基金
Project supported by the National Natural Science Foundation of China(Grant No.11655003)