摘要
目的在生存数据组间比较研究中,当风险率成比例假设失效,特别是生存曲线交叉时,Log-rank检验的检验效能很低,本文介绍和研究一类无上述假设条件的检验法。方法首先介绍一种基于两条生存曲线间面积值的检验法,其次基于置换检验思想提出校正的置换面积检验法,并通过Monte Carlo模拟将上述两种方法与常用的Log-rank和加权Kaplan-Meier检验进行性能比较和评价。结果模拟结果显示,在I类错误上除面积检验法偏离较大外,其余检验法仅有轻微波动。在检验效能方面,风险率成比例假设满足时,Log-rank的检验效能最高;生存曲线交叉于早期时,面积检验和置换面积检验的检验效能最高;除此之外,置换面积检验法效能最高。结论当生存数据风险率成比例假设成立时,推荐Log-rank检验;但当该假设失效,特别是生存曲线出现交叉时,推荐使用置换面积检验法。
Objective In the comparative study of two groups for time-to-event data,when the proportional hazards assumption is violated,especially two survival curves cross,the power of Log-rank test is low to lose reliability,this paper introduced and proposed a kind of methods without proportional hazards assumption.Methods First,we introduced a method based on the area between survival curves(i.e.the area test).Second,a permutation test to adjust the area value test(i.e.the permutation area test)was proposed.Last,the performance of Log-rank test、weighted Kaplan-Meier test,the area test and the proposed permutation area test were compared by Monte Carlo simulation.Results The simulations showed that the type I error of the permutation area test and other methods were slightly fluctuated while the area test deviated from significant level.Log-rank test had the highest power under the assumption of proportional hazards.The area test and the permutation area test were better than other methods when survival curves crossed early;in addition,the permutation area test outperformed other methods.Conclusion Log-rank test is recommended under the assumption of proportional hazards;the permutation area test is robust and recommended when the proportional hazard assumption is violated,especially when two survival curves cross.
作者
黄兴辉
陈金宝
杨紫荆
吕晶晶
侯雅文
陈征
Huang Xinghui;Chen Jinbao;Yang Zijing(Department of Biostatistics,School of Public Health,Southern Medical University(510515),Guangzhou)
出处
《中国卫生统计》
CSCD
北大核心
2019年第1期8-12,共5页
Chinese Journal of Health Statistics
基金
国家自然科学基金(81673268)
广东省自然科学基金(2017A030313812
2018A030313849)
关键词
生存分析
生存曲线交叉
置换检验
MONTE
Carlo
模拟
曲线间面积值
Survival analysis
Crossing survival curves
Permutation test
Monte Carlo simulations
Area value between survival curves