期刊文献+

关于拟范空间的Robinson-Ursescu定理 被引量:1

Robinson-Ursescu Theorem in Qusi-Normed Space
下载PDF
导出
摘要 由凸集值映射的拟开性与拟Lipschitz性的内在联系,推导出拟范空间上集值映射的Robinson Ursescu定理。 Based on the connection between the quasi-open property and quasi-Lipschitz property for set-valued maps, the paper presents the forms of Robinson-Ursescu theorem, open mapping theorem and closed graph theorem in quasi-normed space.
出处 《江南大学学报(自然科学版)》 CAS 2003年第5期512-515,共4页 Joural of Jiangnan University (Natural Science Edition) 
关键词 拟范空间 凸集值映射 Robinson-Ursescu定理 开映照与闭图定理 quasi-normed space convex set-valued maps Robinson-Ursescu theorem open mapping and close graph theorems
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]AUBIN J P, FRANKOWSK A. Set-valued analysis[M]. Boston: Birkhauser, 1990.
  • 2[2]ROBINSON S M. Regularity and stability for convex multivalued function[J]. Math Oper Res, 1976, (1): 130~143.
  • 3[3]URSESCU C. Multifunction with closed convex graph[J]. Czech Math J, 1975,25:438~441.
  • 4[4]KOTHE G. Yopological vector spaces I[M]. Berlin Heidelberg: Springer-Verlag, 1983.
  • 5[5]AUBIN J P, EKELAND I. Applied nonlinear analysis[M]. New York:J Wiley, 1984.
  • 6[6]AUBEN J P, CELLINA A. Differential inclusions[M]. Berlin Heidelbery: Springer-Verlay, 1984.
  • 7[1]AUBIN J P,FRANKOWSKA H.Set-Valued Analysis[M].Boston:Birkhauser, 1990.
  • 8[2]AUBIN J P, CELLINA A. Differential Inclusions[ M]. Berlin, Heidelberg: Springer-Verlag, 1984.
  • 9[3]CHOU C C. Inverse function theorems for multifunctions in Frechet spaces[J]. Chinese J of Math, 1991,19(4): 309-320.
  • 10[4]KOTHE G. Topological Vector Spaces I[M]. Berlin, Heidelberg: Springer-Verlag, 1983.

共引文献1

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部