期刊文献+

基于变参数混合高斯模型的动态目标检测算法 被引量:1

A Dynamic Target Detection Algorithm Based on Variable Parameter Gaussian Mixture Model
原文传递
导出
摘要 针对机器视觉系统中运动目标自动检测的实时性和准确性问题,提出了一种改进的目标检测算法。该算法在混合高斯模型适宜动态环境的基础上,提出了变参数模型,并对Otsu分割算法进行了改进,提高了智能系统检测目标计算速度,而且有效地消除了这类算法固有的目标虚警问题。试验结果表明:在复杂背景下,该方法有良好的适应能力和鲁棒性,适于变化和运动的实际场景。 An improved target detection algorithm for the real-time and accuracy of dynamic target automatic detection in machine vision systems is proposed in this paper.Based on Gaussian mixture model suitable for dynamic environments,variable parameter model is proposed and Otsu segmentation algorithm is improved,which not only improves the speed of detecting targets in the intelligent systems,but also solves inherent problems efficiently in false alarm of targets.The test results show:under complex background,this algorithm has an excellent adaptability and robustness to fit the complicated situation and changing environment.
出处 《装甲兵工程学院学报》 2014年第2期69-74,84,共7页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 动态目标检测 混合高斯模型 变参数 OTSU算法 dynamic target detection Gaussian mixture model variable parameter Otsu algorithm
  • 相关文献

参考文献12

  • 1Chalidabhongse T H,Kim K,Harwood Det al.A perturbation method for evaluating background subtraction algorithms. Proceedings of the Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance . 2003
  • 2Horn BKP,Schunck BG.Determining optical flow. Artificial Intelligence . 1981
  • 3Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000
  • 4Gao X,Boult T E,Coetzee F,et al.Error Analysis of Background Adaption. http://wenku.baidu.com/view/1c83a8ec5ef7baod4a733b16.html . 2011
  • 5Haritaoglu I,Harwood D,Davis LS.W4:real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000
  • 6S. Gupte,O. Masoud,R. F.K. Martin,N. P. Papanikolopoulos.Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems . 2002
  • 7Otsu N.A threshold selection method from gray-level histogram. IEEE Transactions on Systems Man and Cybernetics . 1979
  • 8吕复强,王慧,刘泓.基于改进混合高斯模型的交通流背景检测算法[J].上海交通大学学报,2012,46(12):1920-1925. 被引量:5
  • 9Stauffer C,Grimson WEL.Adaptive background mixture models for real-time tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1999
  • 10何志勇,孙立宁,黄伟国,陈立国.基于Otsu准则和直线截距直方图的阈值分割[J].光学精密工程,2012,20(10):2315-2323. 被引量:36

二级参考文献83

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 3Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 4Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 5Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 6Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 7Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 8Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 9Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 10Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.

共引文献296

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部