期刊文献+

基于PMCMC-RFS的自主车SLAM算法 被引量:1

Autonomous Vehicle SLAM Algorithm Based on PMCMC-RFS
原文传递
导出
摘要 针对无人自主车同时定位与地图构建(Simultaneous Localization And Mapping,SLAM)问题,采用随机有限集(Random Finite Set,RFS)方法对环境特征和车辆的位姿进行描述,将SLAM算法涉及到的多路标特征检测、跟踪、识别及相关等问题在一个统一的贝叶斯状态估计框架内表述,从而可以有效地解决后验估计、信息融合等算法严重依赖数据关联结果的问题。同时,为了计算复杂的联合后验分布,解决粒子滤波算法中提议分布选择困难问题,采用序贯蒙特卡罗(Sequential Monte Carlo,SMC)算法为马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)采样构建高维提议分布策略,提出了基于PMCMC-RFS(Particle MCMC based RFS)的SLAM问题求解方法。试验结果表明:PMCMC-RFS算法能动态估计感知范围内的特征数量,有效地避免了数据关联问题,从而提高了状态估计性能。 Aiming at the problem of Simultaneous Localization And mapping (SLAM)for autonomous ve-hicles,the environment feature as well as vehicle position and attitude are described by using Random Fi-nite Set (RFS),which integrates the aspects such as multi-feature detection,tracking,recognition and correlation related to SLAM algorithm into a single unified Bayesian framework so that the thorny problem that the algorithm of posterior estimation and information fusion relies on the result of association greatly can be effectively solved.Meanwhile,to calculate the complex joint posterior estimation distribution and resolve the proposal distribution selection difficulties in particle filtering algorithm,SLAM resolving meth-od based on Particle Markov Chain Monte Carlo (PMCMC)is proposed using Sequential Monte Carlo (SMC)and Markov Chain Monte Carlo (MCMC).The autonomous ground vehicle experimental results shows that the proposed method can estimate in dynamic manner the feature numbers of perspective scope and has better performance in states estimation without consideration of data association.
出处 《装甲兵工程学院学报》 2015年第2期70-75,共6页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 同时定位与地图构建 随机有限集 马尔科夫链蒙特卡罗 粒子滤波 Simultaneous Localization And Mapping(SLAM) Random Finite Set(RFS) Markov Chain Monte Carlo(MCMC) particle filter
  • 相关文献

参考文献10

  • 1杜航原,赵玉新,杨永鹏,韩庆楠.基于随机有限集的SLAM算法[J].系统工程与电子技术,2012,34(7):1452-1457. 被引量:3
  • 2R. Havangi,M.A. Nekoui,M. Teshnehlab,H.D. Taghirad.A SLAM based on auxiliary marginalised particle filter and differential evolution[J]. International Journal of Systems Science . 2014 (9)
  • 3Ju Hong Yoon,Du Yong Kim,Kuk-Jin Yoon.Efficient importance sampling function design for sequential Monte Carlo PHD filter[J]. Signal Processing . 2012 (9)
  • 4R.Martinez-Cantin,J.A.Castellanos."Unscented SLAM for Large- Scale Outdoor Environments". IEEE/RSJ International Conference on Intelligent Robots and Systems . 2005
  • 5Dissanayake G M W M,Newman P,Clark S,et al.A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation . 2001
  • 6Mullane, John,Vo, Ba-Ngu,Adams, Martin D.,Vo, Ba-Tuong.A random-finite-set approach to Bayesian SLAM. IEEE Transactions on Robotics . 2011
  • 7Vo, Ba-Ngu,Singh, Sumeetpal,Doucet, Arnaud.Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems . 2005
  • 8Martinez-Cantin R,De Freitas N,Castellanos J A.Analysis of particle methods for simultaneous robotlocalization and mapping and a new algorithm:mar-ginal-SLAM. IEEE International Conference onRobotics and Automation . 2007
  • 9Smith R C,Self M,Cheeseman P.A Stochastic Map for Uncertain Spatial Relationships. http://wenku.baidu.com/view/8ae34d87e53a5802l7rcfe00.html . 2012
  • 10Nemeth C,Fearnhead P,Mihaylova L.Sequential Monte Carlo Methods for Stale and Parameter Estimation in Abruptly Changing Environments. IEEE Transactions on Signal Processing . 2014

二级参考文献21

  • 1Durrant H F, Bailey T. Simultaneous localization and mapping: part I [J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99 - 110.
  • 2Williams B, Cummins M, Neira J, et al. A comparison of loop closing techniques in monocular SLAM [J].Robotics and Autonomous Systems, 2009, 57(12) : 1188- 1197.
  • 3Dissanayake G, Newman P, Clark S, et al. A solution to the simul taneous localisation and map (SLAM) building problem [J].IEEE Trans. on Robotics and Automation, 2001, 17(3) : 229 241.
  • 4Julier S J, Uhlmann J K. Unseented filtering and nonlinear esti- mation[J]. Proceedingsofthe IEEE, 2004, 92(a): 401 422.
  • 5Thrun S, Koller D, Ghahmarani Z, et al. Simultaneous mapping and localization with sparse extended information filters: theory and initial results[J]. Springer Tracts in Advanced Robotics, 2004(7) : 363 - 380.
  • 6Montemerlo M, Thrun S, Koller D, et al. FastSLAM= a fac- tored solution to the simultaneous localization and mapping problem[C]//Proc, of the AAAI National Conference on Arti ficial Intelligence, 2002 593 - 598.
  • 7Montemerlo M, Thrun S, Koller improved particle filtering algorit mapping that provably co ional Joint Conference Dr hm nver on et al. FastSLAM2. 0: an for simultaneous localiza- ges[e]//Proc, of the 6th Artificial Intelligence,2003:1151 -1156.
  • 8Kim C, Sakthivel R, Chung W K. Unscented FastSLAM.- a ro- bust algorithm for the simultaneous localization and mapping problem[C] // Proc. of the IEEE International Conference on Robotics and Automation, 2007 : 2439 - 2435.
  • 9Li M H,Hong B R,Luo R H. Coevolution particle filter for mo- bile robot simultaneous localization and mapping[C]//Proc, of the IEEE International Conference on Natural Language and Knowledge Engineering, 2005 :808 - 813.
  • 10Mahler R. Statistical multisource multitarget information fu- sion[M]. Boston: Artech House Publishers, 2007.

共引文献2

同被引文献21

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部