期刊文献+

基于模式识别的离合器动作数据分割方法 被引量:1

Clutch Action Data Partitioning Method Based on Mode Identification
原文传递
导出
摘要 驾驶训练过程中采集的离合器动作数据长,冗余数据多,必须经过一定的处理后才能有效应用。结合离合器动作特点,将主离合器动作模式识别和时间序列数据分割方法结合起来,构建了一种基于模式识别和滑动窗口分割相结合的离合器动作数据分割方法,实现了离合器动作数据的模式表示和快速分割,为后续训练效果评估提供了基础方法。 The clutch action data collected during the driving training is so long with high redundancy data,and only after the process of data processing can it be used effectively.According to the clutch action characteristics,combining the clutch action mode identification with time series data partition method,a kind of clutch data partitioning method based on the mode identification and sliding windows partitioning is built to realize mode identification and rapid partitioning of the clutch action data,providing a basic method to evaluate the driving training effectiveness.
作者 刘义乐 张进秋 LIU Yi-le;ZHANG Jin-qiu(Vehicle Engineering Department,Army Academy of Armored Forces,Beijing 100072,China)
出处 《装甲兵工程学院学报》 2019年第1期45-48,共4页 Journal of Academy of Armored Force Engineering
基金 军队科研计划项目
关键词 离合器动作 数据分割 模式识别 滑动窗口 clutch action data partitioning mode identification sliding window
  • 相关文献

参考文献4

二级参考文献29

  • 1詹艳艳,徐荣聪,陈晓云.基于斜率提取边缘点的时间序列分段线性表示方法[J].计算机科学,2006,33(11):139-142. 被引量:46
  • 2Prat K B,Fink E.Search for patterns in compressed time series[J]. International Journal of Image and Graphics, 2002,2 ( 1 ) : 89-106.
  • 3Keogh E J, Chakrabarti K, Pazzani M J, et al.Dimensionality re- duction for fast similarity search in large time series databases[J]. Journal of Knowledge and Information Systems, 2001,3 (3): 263-286.
  • 4Yi B K,Faloustsos C.Fast time Lp norms[C]//Procceedings of the sequence indexing for arbitrary 26th International Conference on Very Large Data Bases.San Francisco:Morgan Kaufmann Publishers Inc,2000: 385-394.
  • 5Xiao Hui,Feng Xiao-Fei,Hu Yun-Fu.A new segmented time warping distance for data mining in time series database[C]//Proceedings of 2004 International Conference on Machine Learing and Cybernetics, Shanghai, China, 2004:1277-1281.
  • 6Park Sanghyun, Kim Sang-Wook, Chu W W.Scgment-based approach for subsequence searches in sequence databascs[C]//Proc~~dings of the 16th ACM Symposium on Applied Computing. New York:ACM Press,2001:248-252.
  • 7Chung Fu-Lai,Fu Tak-Chung.An evolutionary approach to pattern- based time series segmentation[J].IEEE Transactions on Evolutionary Computation, 2004,8 (5) : 471-489.
  • 8Keogh E,Folias T.The UCR time series data mining arehive[EB/OL].[2009].http://www.cs.ucr.edu /-eamonn/TSDMA/index.html.
  • 9Das Gautam, Lin David, Mannila Heikki, et al. Rule Discovery from Time Series. In: Proc. Fourth Annual Conference on Knowledge Discovery and Data Mining.
  • 10Andrea Baraldi, Ethem Alpaydm. Simplified ART: A New Class of ART Algorithms. Technique Report of INTERNATIONAL COMPUTER SCIENCE INSTITUTE , California: Berkeley, 1998.

共引文献45

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部