摘要
报道了通过原位成核生长法高效构筑草莓状多级结构聚合物-有机硅复合微球的方法。以聚乙烯基吡咯烷酮(PVP)为稳定剂制备得到的粒径均一的聚苯乙烯(PS)微球为中心核粒子,吸附自组装的十六烷基三甲基溴化铵(CTAB)胶束后,与水解过的硅烷偶联剂(BTEE/TEOS)混合,得到草莓状的PS@oSiO_2复合微球。通过引入CTAB胶束对核种子粒子进行改性及对后续生长有机硅进行预水解,通过调控CTAB胶束液用量及有机硅水解缩合反应条件,可有效控制PS微球和有机硅前驱物之间的反应动力学,最终可控制备表面凸起小粒子粒径及覆盖度可调的草莓状PS@oSiO_2复合微球。该研究不仅有利于了解原位成核生长法制备草莓状复合微球的形成机制,还对开发高性能浸润性表界面具有重要意义。
This paper presents an in situ nucleation and growth method to efficiently construct raspberry-like polymer-organosilica composite microspheres with hierarchical structure. In the approach, PS microspheres with uniform particle size prepared by using polyvinylpyrrolidone(PVP) as the stabilizer served as the core particles and then adsorbed self-assembled CTAB micelles. Then, PS microspheres were mixed with hydrolyzed organosilane(BTEE/TEOS) to gain raspberry-like PS@oSiO2 composite microspheres. The CTAB micelles were introduced to modify the core seed particles and pre-hydrolyze the subsequent grown organosilica. Reaction kinetics between PS microspheres and organosilica precursor could be effectively controlled by adjusting the amount of CTAB micelles and the hydrolysis and condensation reaction conditions of organosilica. Finally, the raspberry-like PS@oSiO2 composite microspheres with adjustable particle size and coverage were controllably prepared. This study not only helps to understand the formation mechanism of the raspberry-like composite microspheres prepared by in situ nucleation and growth method, but also has great significance in developing high-performance infiltrating surface interfaces.
作者
毛贻静
潘栋宇
张潇天
曹志海
戚栋明
孙阳艺
MAO Yijing;PAN Dongyu;ZHANG Xiaotian;CAO Zhihai;QI Dongming;SUN Yangyi((Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《浙江理工大学学报(自然科学版)》
2019年第2期174-181,共8页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金
国家自然科学基金青年基金项目(51703203)
浙江省自然基金青年基金项目(LQ17E030004)
关键词
原位成核生长
草莓状
有机硅
复合微球
动力学可控
In situ nucleation and growth
raspberry-like
organosilica
composite microspheres
kinetic-controlled