期刊文献+

具有小秩Sylow-子群的有限可解群

On finite solvable groups with Sylow-subgroups of small rank
下载PDF
导出
摘要 设G是有限p-群,■,其中E为G的初等交换子群,称为G的秩。再令■,其中E为G的初等交换子群,称为G的正规秩。研究Sylow-子群的正规秩≤3的可解群的结构问题,运用极小阶反例法,证明了若G为有限可解群且G的Sylow-子群的正规秩≤3,则G∈N_(2′)N_(2′)N_2U。更进一步,群G的幂零长不超过5,且对所有的素数p,G的p-长不超过2。 We assume G is a finite p-group, r(G)=max{logp|E|,E≤G}.Wherein, E is an elementary exchange subgroup of G, called rank of G. We make rn(G)=max{logp|E|,E≤G,E?G}, where E is an elementary called normal rank of G. The structure problem of solvable groups of normal rank of Sylow-subgroups ≤3 was studied. The method of minimal counterexample was used to prove If G is a finite soluble group and the normal rank of Sylow-subgroup of G≤3, then G∈N2′N2′N2U. Moreover, the nilpotent length of G is no more than 5 and for every prime numbe p, the p-length of G is no more than 2.
作者 肖玲玲 孙芬芬 易小兰 XIAO Lingling;SUN Fenfen;YI Xiaolan((School of Sciences,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《浙江理工大学学报(自然科学版)》 2019年第2期239-242,共4页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(11471055) 浙江省自然科学基金项目(LY18A010028)
关键词 正规秩 可解群 Sylow-子群 正规子群 normal rank soluble group Sylow-subgroup normal subgroup
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部