期刊文献+

基于深度学习的语音识别模型及其在智能家居中的应用 被引量:11

Speech recognition model based on deep learning and its application in smart home
下载PDF
导出
摘要 为了满足人们对智能家居设备控制便捷化的需求,提出了一种基于降噪自动编码器的深度学习语音识别模型,经过语音识别模型解析出短语控制指令,以实现家居设备控制。该语音识别模型主要包含两个部分:首先进行无监督学习预训练,预训练前随机将一些网络节点置为0,人工模拟噪声数据,然后采用限制玻尔兹曼机权重矩阵依次训练每一个隐含层,通过比较输入数据与输出数据的偏差修改权重,优化参数;然后进行有监督微调,把训练好的参数作为整个网络的初始值,采用误差反向传播算法对整个网络模型调参。实验结果表明:该语音识别模型与深度信念网络对比,在语音识别率和对噪声的鲁棒性都有明显提高。将该语音识别模型和智能家居系统相结合,从普通短语中判断出家居控制指令,实现人机交互非接触式、便捷式控制,从而使系统更加智能化。 In order to meet the needs of people to control smart home equipment conveniently, a deep learning speech recognition model based on denoising autoencoder was proposed. Through the speech recognition model, the phrase control instruction was parsed to achieve the purpose of home equipment control. The speech recognition model mainly consists of two parts. The first part is unsupervised learning pre-training. Before the unsupervised pre-training, some network nodes were randomly set to 0;the noise data were artificially simulated;then each hidden layer was trained sequentially by using the Boltzmann machine weight matrix. The weight was modified and the parameters were optimized through comparing the deviation between input data and output data. Then, supervised fine adjustment was conducted. The well-trained parameters served as the initial values of the whole network, and error back propagation algorithm was adopted to adjust parameters of the whole network model. The experimental results showed that speech recognition rate and noise robustness of the speech recognition model improve significantly, compared with deep belief network. The speech recognition model could be combined with smart home system to judge home control command from the common phrase and achieve human-computer interaction non-contact and convenient control so that the system is more intelligent.
作者 包晓安 徐海 张娜 吴彪 钱俊彦 BAO Xiaoan;XU Hai;ZHANG Na;WU Biao;QIAN Junyan(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;Graduate School of East Asian Studies,Yamaguchi University,Yamaguchi-shi 753-8514,Japan;School of Computer Science and Engineering,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《浙江理工大学学报(自然科学版)》 2019年第2期217-223,共7页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(61502430 61562015) 广西自然科学重点基金项目(2015GXNSFDA139038) 浙江理工大学521人才培养计划项目
关键词 深度学习 语音识别 降噪自动编码器 智能家居 deep learning speech recognition denoising autoencoder smart home
  • 相关文献

参考文献10

二级参考文献50

  • 1陈国良,韩文廷.人工神经网络理论研究进展[J].电子学报,1996,24(2):70-75. 被引量:20
  • 2孙宁,孙劲光,孙宇.基于神经网络的语音识别技术研究[J].计算机与数字工程,2006,34(3):58-61. 被引量:9
  • 3荣薇,陶智,顾济华,赵鹤鸣.基于改进LPCC和MFCC的汉语耳语音识别[J].计算机工程与应用,2007,43(30):213-216. 被引量:17
  • 4Maurel Y, Diaconescu A, Lalanda P. Creating complex, adaptable management strategies via the opportunistic integration of decentralised management resources[C]// Proceedings of the 2009 International Conference on Adaptive and Intelligent Systems. Washington: IEEE Computer Society, 2009: 86-91.
  • 5Sicard S, Boyer F, De Palma N. Using eomponents for architecture-based management: the sel{-repair case [C]//Proceedings of the 30th International Conference on Software Engineering. New York : ACM , 2008: 101-110.
  • 6Uchitel S, Alrajeh D, Ben D S, et al. Supportingincremental behaviour model elaboration[J]. Computer Science-Research and Development, 2013, 28(4): 279- 293.
  • 7Gui N, Florio V D, Blondia C. Transformer: an adaptation framework with contextual adaptation behavior composition support[J]. Software Practice :Experience, 2013, 43(8): 937-967.
  • 8Uchitel S, Kramer J, Magee J. Behaviour model elaboration using partial labelled transition systems[J]. ACM SIGSOFT Software Engineering Notes, 2003, 28 (5) : 19-27.
  • 9Redon:to R P D, Pazos A J J. Reuse of verification efforts and incomplete specifications in a formalized, iterative and incremental :ftware process[C]//Proceedings of the 23rd International Conference on Software Engineering. Toronto: IEEE Computer Society, 2001: 801-802.
  • 10Nejati S, Sa'betzadeh M, Chechik M, et al. Matching and merging of variant feature specifications [J]. Software Engineering, IEEE Transactions on, 2012, 38 (6): 1355 1375.

共引文献253

同被引文献93

引证文献11

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部