摘要
采用卷积神经网络可有效提高人脸检测算法的精度,然而其模型参数过于复杂,在一般设备上检测速度很慢。针对这个问题,提出了一种三层网络级联的人脸检测算法,利用级联方式实现网络小型化,通过多任务方式提高人脸检测的精度。在网络的第一级采用金字塔结构网络,结合anchor机制提取多尺度人脸建议框,在此基础上结合卷积分解策略和网络加速的方法,进一步增强网络特征提取的有效性并减少模型参数。实验结果表明:在FDDB上该算法的检测精度和检测速度均优于MTCNN;在主频为2.0 GHz的八核设备上,检测速度可以达到80 fps。
Convolutional Neural Network(CNN)can effectively improve the accuracy of face detection algorithm.However,the complex parameters in the model always cause the slow detection speed on common devices.To solve this problem,a face detection algorithm based on three-layer network cascaded was proposed in this paper.It can achieve miniaturization of the network by cascade system,and can improve the accuracy of face detection by using multitask mode.In the first stage of the network,the network with pyramid structure was applied,and multi-scale face prediction boxes were extracted by combining anchor mechanism.On this basis,convolutional decomposition strategy and network acceleration method were combined to further enhance effectiveness of network characteristic extraction and reduce model parameters.The results showed that,both detection precision and detection speed of the algorithm on FDDB were better than that of MTCNN.The speed could reach 80 fps on the eight-core device with the main frequency of 2.0 GHz.
作者
包晓安
胡玲玲
张娜
吴彪
桂江生
BAO Xiaoan;HU Lingling;ZHANG Na;WU Biao;GUI Jiangshen(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;Department of East Asian Studies,Yamaguchi University,Yamaguchi 753-8514,Japan)
出处
《浙江理工大学学报(自然科学版)》
2019年第3期347-353,共7页
Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金
国家自然科学基金项目(61502430
61562015)
广西自然科学重点基金项目(2015GXNSFDA139038)
浙江理工大学521人才培养计划项目
关键词
人脸检测
金字塔网络
网络加速
小型化
级联网络
face detection
pyramid network
network acceleration
miniaturization
cascade network