期刊文献+

基于改进萤火虫算法的云计算任务调度算法 被引量:4

Cloud computing task scheduling algorithm based on improved firefly algorithm
下载PDF
导出
摘要 针对云计算环境中的大量任务,为提高资源利用率,缩短任务完成时间,提出了一种基于改进萤火虫算法的任务调度算法。首先用每只萤火虫的位置表示一种可行的调度方案,利用自然数对萤火虫进行编码表示其所在位置,并随机初始化种群;然后在搜索过程中利用混沌扰动对适应度函数值较低的萤火虫进行激活,保持种群活性,利用真实物理反弹理论对飞出搜索区域的萤火虫进行控制,维护种群多样性,降低陷入局部最优的概率。在CloudSim平台进行仿真测试,结果表明,该算法能够有效缩短任务完成时间,且寻优结果更佳。 In order to improve the utilization rate of resources and shorten the task completion time,a task scheduling algorithm based on improved firefly algorithm was proposed to deal with a large number of tasks in the cloud computing environment.Firstly,the location of each firefly was used to express a feasible scheduling scheme,and natural numbers were applied to encode fireflies and represent their locations.Meanwhile,the population was randomly initialized.Secondly,in the search process,chaos disturbance was used to activate the firefly with low fitness function value and maintain the population activity.Real physical rebound theory was utilized to control the firefly flying out of the search area so as to maintain the population diversity and reduce the probability of falling into local optimal.Finally,the simulation test of CloudSim platform was conducted.The test results show that the algorithm can shorten the task completion time and the optimization result is better.
作者 李成辉 李仁旺 杨强光 贾江鸣 LI Chenghui;LI Renwang;YANG Qiangguang;JIA Jiangming(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;Faculty of Mechanical Engineering&Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《浙江理工大学学报(自然科学版)》 2019年第3期354-359,共6页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(51475434) 浙江省自然科学基金项目(LY14G010007)
关键词 云计算 任务调度 萤火虫算法 混沌 多样性 cloud computing task scheduling firefly algorithm chaos diversity
  • 相关文献

参考文献13

二级参考文献184

  • 1熊聪聪,冯龙,陈丽仙,苏静.云计算中基于遗传算法的任务调度算法研究[J].华中科技大学学报(自然科学版),2012,40(S1):1-4. 被引量:27
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:196
  • 3袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55
  • 4熊伟清,魏平,赵杰煜.信号传递的二元蚁群算法[J].模式识别与人工智能,2007,20(1):15-20. 被引量:10
  • 5VARIA J. Cloud architectures - Amazon Web services [ EB/OL]. [ 2009 - 03 - 01 ]. http://acmbangalore, org/events/monthly-talk/ may-2008 --cloud-architectures---amazon-web-services. html.
  • 6BRYANT R E. Data-intensive supercomputing: The case for DISC, CMU-CS-07-128 [ R]. Pittsburgh, PA, USA: Carnegie Mellon University, Department of Computer Science, 2007.
  • 7SZALAY A S, KUNSZT P, THAKAR A, et al. Designing and mining multi-terabyte astronomy archives: The sloan digital sky survey [ C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000:451 - 462.
  • 8BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: The Google cluster architecture [ J]. IEEE Micro, 2003, 23(2) : 22 -28.
  • 9GILES J. Google tops translation ranking [ EB/OL]. (2006 - 11 - 06) [ 2009 - 03 - 06 ]. http://www, nature, com/news/2006/ 061106/full/news061106-6. html.
  • 10维基百科.Cloud computing [ EB/OL]. [ 2009 - 03 - 10]. http://en. wikipedia, org/wiki/Cloud_computing.

共引文献1112

同被引文献28

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部