期刊文献+

高维空间上包含n次迭代的Feigenbaum型泛函方程的C^1解

The C^1 Solution of Feigenbaum Type Functional Equation with nIteration on High-dimensional Space
下载PDF
导出
摘要 本文利用矩阵分析的相关理论,Schauder不动点定理及banach不动点定理,自同胚和紧凸子集的相关性质研究了高维空间上包含n次迭代的Feigenbaum型泛函方程的连续可微解的存在性、唯一性及稳定性. In this paper,by using the related theory of matrix analysis,Schauder fixed point theorem and Banach fixed point theorem,also the related properties of the homeomorphism,the existence,unique-ness and stability of the continuously differentiable solution of Feigenbaum type functional equation withn iteration on high-dimensional space are researched.
出处 《湛江师范学院学报》 2014年第6期28-36,共9页 Journal of Zhanjiang Normal College
基金 全国大学生创新训练项目(201410579006) 广东省大学生科技创新重点培育项目 岭南师范学院2014年度大学生创新创业训练计划项目
关键词 Feigenbaum型泛函方程 SCHAUDER不动点定理 BANACH不动点定理 n次迭代 存在性 Feigenbaum functional equation Schauder fixed point theorem Banach fixed point theorem n iteration existence uniqueness stability
  • 引文网络
  • 相关文献

参考文献9

  • 1Patrick J. McCarthy.The general exact bijective continuous solution of Feigenbaum’s functional equation[J]. Communications in Mathematical Physics . 1983 (3)
  • 2Oscar E. Lanford III.A computer-assisted proof of the Feigenbaum conjectures[J]. Bulletin of the American Mathematical Society (1979-present) . 1982 (3)
  • 3Zhang J Z,Yang L.Disscussion on iterative roots of continuous and piecewise monotone fuctions. Acta mathematica Sinica,Chinese . 1983
  • 4H. Epstein.New proofs of the existence of the Feigenbaum functions[J]. Communications in Mathematical Physics . 1986 (3)
  • 5Alexei V. Tsygvintsev,Ben D. Mestel,Andrew H. Osbaldestin.Continued fractions and solutions of the Feigenbaum-Cvitanovi\’c equation. C. R., Math., Acad. Sci. Paris . 2002
  • 6李晓培.Banach空间上的一类映射迭代方程[J].四川大学学报(自然科学版),2004,41(3):505-510. 被引量:4
  • 7张伟年.DISCUSSION ON THE ITERATED EQUATION ■(x)=F(x)[J].Chinese Science Bulletin,1987,32(21):1444-1451. 被引量:5
  • 8Colin J. Thompson,J. B. McGuire.Asymptotic and essentially singular solutions of the Feigenbaum equation[J]. Journal of Statistical Physics . 1988 (5-6)
  • 9林雪梅,黄上梅,黄海敏,李晓培.关于Feigenbaum型泛函方程的C^1解[J].湛江师范学院学报,2011,32(3):33-37. 被引量:3

二级参考文献29

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部