摘要
目的:评估动态增强磁共振成像(DCE-MRI)参照物模型定量参数与乳腺浸润性导管癌患者预后相关因素和乳腺癌分子病理分型之间的相关性。方法:回顾性分析50例经病理学检查证实的浸润性导管癌患者的MRI和病理学检查资料,运用DCE-MRI参照物模型测量药代动力学定量参数,包括病灶相对肌肉的容量转运常数(RR K^(trans))、病灶的速率常数(K_(ep))、病灶的容量转运常数与肌肉的血管外细胞外间隙容积比值(K^(trans)/V_e),分析上述定量参数与乳腺癌患者预后相关因素和乳腺癌分子病理分型之间的相关性。结果:组织学分级为3级的病灶的平均RR K^(trans)和K_(ep)值高于组织分级为1~2级的病灶(均P<0.05);雌激素受体(ER)阴性者和孕激素受体(PR)阴性者的平均RR K^(trans)值和K_(ep)值分别高于ER阳性者和PR阳性者(均P<0.05)。三阴性乳腺癌患者的RR K^(trans)和K_(ep)高于Luminal型乳腺癌患者(均P<0.05)。结论:DCE-MRI参照物模型所得定量参数RR K^(trans)和K_(ep)有助于预测乳腺癌的预后和鉴别乳腺癌的分子病理分型。
Objective : To investigate the association of parameters in dynamic contrast-enhanced magnetic resonance imaging( DCE-MRI) using reference region model with prognostic factors and molecular subtypes of breast cancer. Methods: MRI and pathological data of 50 patients with pathologically confirmed invasive ductal carcinoma of the breast were retrospectively analyzed. Reference region model was applied to analyze pharmacokinetic quantitative parameters including volume transfer constant(RR K^(trans)), rate constant(K_(ep)) and the ratio of K^(trans) to extracellular space volume(K^(trans)/V_e). The associations of the above parameters with prognostic factors and molecular subtypes of breast cancer were analyzed. Results : RR K^(trans) and K_(ep) were significantly higher in patients of histological grade 3 compared with those of histological grade 1 & 2(all P <0. 05); and the patients with estrogen receptor(ER)-negative and/or progesterone receptor( PR)-negative also had higher RR K^(trans) and K_(ep) than those with ER-positive or PR-positive(all P <0. 05). For immunohistochemistry, RR K^(trans) and K_(ep) were significantly higher in triple negative breast cancer compared with luminal type breast cancer(all P < 0.05). Conclusion : High RR K^(trans) and K_(ep) are associated with poor prognosis of breast cancer, and which can also be used to distinguish molecular subtypes of breast cancer.
出处
《浙江大学学报(医学版)》
CAS
CSCD
北大核心
2017年第5期505-510,共6页
Journal of Zhejiang University(Medical Sciences)
基金
宁波市自然科学基金(2016A610140)
宁波市科技惠民科技项目(2016C51013)
浙江省公益技术应用研究计划(2017C35003)
宁波市社发领域重大科技专项(2015C50004)
浙江省医药卫生重大科技计划(WKJ-ZJ-1807)
关键词
乳腺肿瘤/诊断
磁共振成像/方法
钆/诊断应用
血流动力学
预后
模型
生物学
回顾性研究
Breast neoplasms/diagnosis
Magnetic resonance imaging/methods
Gadolinium/diagnostic use
Hemodynamics
Prognosis
Models
biological
Retrospective studies