期刊文献+

基于ICA-EMD与SVM的滚珠丝杠故障诊断 被引量:1

Study on ball screw fault diagnosis based on ICA-EMD and SVM
下载PDF
导出
摘要 针对滚珠丝杠振动信号的非平稳性,采用经验模态分解(EMD)进行信号处理。而传感器采集到的振动信号存在混叠现象,EMD分解能力受限,因此采用独立成分分析方法,重新分离三个振动源信号,对得到的新振动信号进行EMD处理,最后对各IMF成分进行能量分析,结合IMF能量及其他特征值,利用支持向量机(SVM)实现智能故障诊断。 To non-stationary vibration signal of the ball screw,this paper used empirical mode decomposition(EMD) for signal processing. Because vibration signal collected by sensors has aliasing phenomenon,the EMD decomposition ability is limited,thus using independent component analysis method to separate three vibration source signals. Finally,getting energy analysis of each IMF component,in combination with the IMF and other energy eigenvalue,this paper realized the intelligent fault diagnosis through support vector machine(SVM).
出处 《制造技术与机床》 北大核心 2014年第12期133-136,共4页 Manufacturing Technology & Machine Tool
基金 国家自然科学基金项目(51075220) 教育部高等学校博士学科点专项科研基金(20123721110001) 山东省高等学校科技计划项目(J13LB11) 青岛市基础研究计划项目(12-1-4-4-(3)-JCH)
关键词 滚珠丝杠 故障诊断 ICA 经验模态分解 能量熵 SVM ball screw fault diagnosis ICA EMD energy entropy support vector machine
  • 相关文献

参考文献3

二级参考文献24

  • 1罗洁思,于德介,彭富强.基于EMD的多尺度形态学解调方法及其在机械故障诊断中的应用[J].振动与冲击,2009,28(11):84-86. 被引量:25
  • 2沈国际,陶利民,陈仲生.多频信号经验模态分解的理论研究及应用[J].振动工程学报,2005,18(1):91-94. 被引量:34
  • 3程军圣,于德介,杨宇.基于SVM和EMD包络谱的滚动轴承故障诊断方法[J].系统工程理论与实践,2005,25(9):131-136. 被引量:25
  • 4丁康,孔正国.振动调幅调频信号的调制边频带分析及其解调方法[J].振动与冲击,2005,24(6):9-12. 被引量:27
  • 5Radcliff G A.Condition monitoring of rolling element hearings using the enveloping technique[J].Machine Condition Monitoring,Mechanical Engineering Pubheation Ltd.,London,1990,55-67.
  • 6Brown D N.Envelope analysis detects bearing faults before major damage occurs[J].Pulp Pap,1989,63:113-117.
  • 7Cheng Junsheng,Yu Dejie,et al.Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis[J].Mechanismand Machine Theory,2008,43 (6):712-723.
  • 8Dwyer R F.Detection of non-Gaussian signals by frequency domain kurtosis estimation[C].Acoustic,Speech,and Signal Processing.Boston:IEEE International Conference on ICASSP,1983.607-610.
  • 9Vrabie V,Granjon P,Serviere C.Spectral kurtosis:from definition to application[M].Grado,Italy:IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,2003.
  • 10Vrabie V,Granjon P,Maroni C,et al.Application of spectral kurtosis to bearing fault detection in motors[C].5th International Conference on acoustical and vibratory surveillance methods and diagnostic techniques.France:HAL-CCSd-CNRS,2004.

共引文献135

同被引文献8

  • 1Cempl C, Tabaszewski M. Muhidimensional condition monitoring of ma- chines in non -stationary operation [ J ]. Mechanical Systems and Signal Processing, 2007, 21 : 1233 - 1241.
  • 2Lei Y G, Li N P, Lin J, et al. Fault diagnosis of rotating machinery based on an adaptive ensemble empirical mode decomposition [ J]. Sen- sors, 2013, 13:16950 - 16954.
  • 3Hui K H, Hee L M, Leong M S. Time - frequency signal analysis in ma- chinery fault diagnosis: review [ J ]. Advanced Materials Research, 2014, 845:41 -45.
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposi- tion and hilbert speetrum for non - linear and non - stationary time se- ries analysis [J ]. Proceeding of the Royal Society of London Series A - Mathematical Physical and Engineering Scienees, 1998, 454:903 - 995.
  • 5Phinyomark A, Limsakui C, Phukpattaranout P. Optimal wavelet func- tions in wavelet denoising for multifunetion myoeleetrie control [ J ]. ECTI Transactions on Electrical Engineering, Electronics, and Communica- tions, 2010, 8(1):43-52.
  • 6戴桂平.基于EMD时频分析的轧机扭振瞬态冲击特征提取[J].仪表技术与传感器,2009(9):74-77. 被引量:5
  • 7覃慧,南江红.旋转机械故障诊断的时频分析方法比较[J].科学技术与工程,2011,11(9):1991-1994. 被引量:8
  • 8李丹阳,蔡金燕,何强,朱赛.在线信号的快速经验模态分解方法[J].仪表技术与传感器,2013(6):108-110. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部