期刊文献+

蒙皮铣削镜像顶撑技术研究 被引量:11

Mirror top bracing technology in milling aircraft skin
下载PDF
导出
摘要 通过分析飞机蒙皮零件的结构特性、加工难点以及传统蒙皮加工方法的缺陷,介绍了满足新一代蒙皮零件加工精度需求及绿色制造发展趋势的新型蒙皮加工技术、蒙皮镜像铣削技术。蒙皮镜像铣技术是集减薄、切边、开口、钻孔于一体化的多功能铣削技术。本章通过阐述蒙皮镜像数控编程、刀轨自适应调整及厚度精确控制3个关键技术详细介绍了蒙皮镜像铣加工工艺。通过加工、检测、监测的有效集成精确控制蒙皮加工厚度及变形,在提高加工效率的同时,保证加工质量,降低加工成本。 Through the analysis of the structural characteristics,processing difficulties and the shortcomings of the traditional envelope machining method of the aircraft skin parts,mirror milling system as a new type of technology is put forward to meet the demands of skin parts processing precision and the development trend of green manufacturing processing technology. Mirror milling technology is the integration of multi- function milling technology of thinning,trimming,openings and drilling. This paper introduces this technology by expatiating machining process, tool path adaptive adjusting and thickness control.Through the effective integration of machining,detecting and monitoring,the system can control skin thickness and deformation process precisely,which can improve the efficiency of the machining,ensure machining quality and reduce the processing cost at the same time.
出处 《制造技术与机床》 北大核心 2015年第4期92-96,共5页 Manufacturing Technology & Machine Tool
基金 "高档数控机床与基础制造装备"国家科技重大专项:国产高档数控机床与数控系统在飞机肋梁等加工单元中的应用(2013ZX04001-021)
关键词 蒙皮 镜像铣削 检测 监测 aircraft skin mirror milling detection monitoring
  • 相关文献

参考文献7

二级参考文献13

  • 1RATCHEY S, LIU S L, HUANG W, et al. A flexible model for end milling of low-rigidity parts[J]. Journal of Materials Processing Technology, 2004, 153-154(1-3): 134-138.
  • 2WAN M, ZHANG W H, QIN G H, et al. Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills[J]. International Journal of Machine Tool & Manufacture, 2007, 47(11): 1 767-1 776.
  • 3BUDAK E, ALTINTAS Y, ARMAREGO E J A. Prediction of Milling force coefficients form orthogonal cutting data[J]. ASME Journal of Engineering for Industry, 1996, 118: 216-224.
  • 4JEONG H K, YUN W S, CHO D W, et al. Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction[J]. International Journal of Machine Tool &Manufacture, 2002, 42(15): 1 595-1 605.
  • 5RATCHEY S, HUANG W, LIU S L, et al. Modeling and simulation environment for machining of low-rigidity components[J]. Journal of Materials Processing Technology, 2004, 153-154(1-3): 67-73.
  • 6RAI J K, XIROUCHAKIS P. Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components[J]. International Journal of Machine Tools & Manufacture, 2008, 48(6): 629-643.
  • 7DEPINCE P, HASCOET J Y. Active integration of tool deflection effects in end milling. Part 1: Prediction of milled surfaces[J]. International Journal of Machine Tools & Manufacture, 2006, 46(9): 937-944.
  • 8TSAI J S, LIAO C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces[J]. Journal of Materials Processing Technology, 1999, 94(3): 235-246.
  • 9HE N, WANG Z G, JIANG C Y, et al. Finite element method analysis and control stratagem for machining deformation of thin-walled components[J]. Journal of Material Processing Technology, 2003, 139(1): 332-336.
  • 10BUDAK E, ALTINAS Y. Modeling and avoidance of static form errors in peripheral milling of plates[J]. International Journal of Machine Tools & Manufacture, 1995, 35(3): 459-476.

共引文献44

同被引文献97

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部