期刊文献+

基于时间序列模型的医院门诊量分析与预测 被引量:8

Hospital outpatient visit analysis and forecasting using time series models
下载PDF
导出
摘要 医院门诊量分析与预测对医疗资源管理和为高质量医疗护理提供决策有重要作用.当前在门诊量分析与预测方面的研究还没引起足够重视,且研究主要集中在门诊量预测的计算方法,缺少全面深入的数据分析和规律挖掘.为此提出构建ARMAX模型、神经网络模型和ARMAX模型与神经网络的混合模型,用来描述医院门诊量的线性和非线性特征.以时间序列模型全面深入地分析厦门市医院门诊量日度数据的规律,研究发现,医院门诊量有显著的上升趋势、周内日效应以及很强的序列自相关性.通过样本外预测比较发现,采用混合模型进行预测取得的预测结果较好,这是由于混合模型能够同时获取门诊量数据的线性部分和非线性部分,数据信息比较完整. Analysis and forecasting of hospital outpatient visits are important in making correct and feasible decisions for hospital resources management and high quality patient care provision.However,research in outpatient visit analysis and forecasting has not drawn much attentions so far,and current research mainly focuses on the computational methods for forecasting only,lacking in comprehensive analysis,rules finding,and knowledge discovery for hospital outpatient visits.Thus it was propsed to construct autoregressive moving average models(ARMAX),neural network models,and hybrid models integrating ARMAX and NN for outpatient visit analysis and forecasting.By constructing these models,the rules of the daily outpatient visit of the Xiamen city,China were analyzed comprehensively.It was fund that outpatient visit data show a significantly upward time trend,a significant day-of-week effect,and a significant serial autocorrelation.By comparing the forecasting performance of these time series models,itwas fund that the ARMAX+NN hybrid model achieves better performance,which is mainly due to the fact that the hybrid model can capture both linear and nonlinear parts of the outpatient visit data.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第10期795-803,共9页 JUSTC
基金 国家自然科学基金(61373147 61305004)
关键词 门诊量预测 时间序列模型 ARMAX 神经网络 混合模型 outpatient visits forecasting time series models ARMAX neural network hybrid models
  • 相关文献

参考文献18

  • 1XIAO Yi,XIAO Jin,LIU John,WANG Shouyang.A MULTISCALE MODELING APPROACH INCORPORATING ARIMA AND ANNS FOR FINANCIAL MARKET VOLATILITY FORECASTING[J].Journal of Systems Science & Complexity,2014,27(1):225-236. 被引量:4
  • 2Esmaeil Hadavandi,Hassan Shavandi,Arash Ghanbari,Salman Abbasian-Naghneh.Developing a hybrid artificial intelligence model for outpatient visits forecasting in hospitals[J]. Applied Soft Computing Journal . 2011 (2)
  • 3Jing-Rong Chang,Liang-Ying Wei,Ching-Hsue Cheng.A hybrid ANFIS model based on AR and volatility for TAIEX forecasting[J]. Applied Soft Computing Journal . 2010 (1)
  • 4Dongxiao Niu,Da Liu,Desheng Dash Wu.A soft computing system for day-ahead electricity price forecasting[J]. Applied Soft Computing Journal . 2009 (3)
  • 5Lean Yu,Kin Keung Lai,Shouyang Wang.Multistage RBF neural network ensemble learning for exchange rates forecasting[J]. Neurocomputing . 2008 (16)
  • 6Ching-Hsue Cheng,Jia-Wen Wang,Chen-Hsun Li.Forecasting the number of outpatient visits using a new fuzzy time series based on weighted-transitional matrix[J]. Expert Systems With Applications . 2007 (4)
  • 7Lean Yu,Shouyang Wang,K.K. Lai.A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates[J]. Computers and Operations Research . 2004 (10)
  • 8G.Peter Zhang.Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing . 2002
  • 9Guoqiang Zhang,B. Eddy Patuwo,Michael Y. Hu.Forecasting with artificial neural networks:[J]. International Journal of Forecasting . 1998 (1)
  • 10WEI HUANG,KIN KEUNG LAI,YOSHITERU NAKAMORI,SHOUYANG WANG,LEAN YU.NEURAL NETWORKS IN FINANCE AND ECONOMICS FORECASTING. International Journal of Information Technology & Decision Making . 2007

二级参考文献21

  • 1Meese R A and Rogoff K S, Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 1983, 14(1-2): 3-24.
  • 2Marcos D B, Maximo C, and Gabriel P Q, Short-run forecasting of the euro-dollar exchange rate with economic fundamentals, Journal of International Money and Finance, 2012, 31(2): 377-396.
  • 3Pasquale D C, Lucio S, and Giulia S, The predictive information content of external imbalances for exchange rate returns: How much is it worth? Review of Economics and Statistics, 2012, 94(1): 100-115.
  • 4Kilian L and Taylor M P, Why is it so difficult to beat random walk forecast of exchange rates, Journal of International Economics, 2003, 60(1): 85-107.
  • 5Yu L, Lai K K, and Wang S Y, Multistage RBF neural network ensemble learning for exchange rates forecasting, Neurocomputing, 2008, 71(16-18): 3295-3302.
  • 6Yu L, Wang S Y, Lai K K, and Huang W W, Developing and assessing an intelligent forex rolling forecasting and trading decision support system for online e-service, International Journal of Intelligent Systems, 2007, 2(5): 475-499.
  • 7Yu L, Chen H H, Wang S Y, and Lai K K, Evolving least squares support vector machinesfor stock market trend mining, IEEE Transactions on Evolutionary Computation, 2009, 13(1): 87-102.
  • 8Wang Y Q, Wang S Y, and Lal K K, Measuring financial risk with generalized asymmetric least squares regression, Applied Soft Computing, 2011, 11(8): 5793 5800.
  • 9Huang W, Lai K K, Nakamori Y, Wang S Y, and Yu L, Neural networks in finance and economics forecasting, International Journal of Information Technology and Decision Making, 2007, 6(1): 113-140.
  • 10Yu L, Wang S Y, and Lai K K, A neural-network-based nonlinear metamodeling approach to financial time series forecasting, Applied Soft Computing, 2009, 9(2): 563-574.

共引文献10

同被引文献52

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部