期刊文献+

基于爬壁机器人的桥梁裂缝图像检测与分类方法 被引量:25

A bridge crack image detection and classification method based on a climbing robot
下载PDF
导出
摘要 针对传统的桥梁裂缝检测方法成本高、工作环境危险的现状,提出一种基于爬壁机器人的桥梁裂缝图像检测与分类方法,即利用安装在爬壁机器人上的微型摄像镜头获取桥梁的壁面裂纹,通过图像处理和分析方法识别并对裂缝分类.首先对获取的图片去除运动模糊;然后运用小波变换对图像中的裂缝目标进行增强,再用二值图像面形态学分析提取裂缝目标,运用KD树对裂缝进行连接完成对裂缝图像的识别;最后运用支持向量机方法对裂缝实现分类,并与几何特征分类方法和基于BP神经网络的分类方法比较,结果表明,该方法对裂缝分类效果较好. Traditional bridge crack detection methods are of high cost and high risk.A bridge crack detection and classification method was proposed based on a climbing robot using image analysis with a miniature camera mounted on the robot to collect images.First,the motion blur of acquired images was removed by Wiener filtering method.Second,wavelet transform was used to enhance the fractures of the crack in the image.Third,to complete crack image recognition,the surface morphology analysis is applied to extract crack fragments and then KD-tree was used to connect them.Finally,support vector machine method was used to classify crack images based on a series of basic visual characteristics and geometric features. Comparison of geometrical characteristic classification method and BP neural network classification method,results show that our method is better.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第9期788-796,共9页 JUSTC
基金 重庆市杰出青年基金(cstc2014jcyjjq0049) 国家重点基础研究发展项目(973计划)(2011CB302100 2011CB302106)资助
关键词 爬壁机器人 运动模糊 小波分析 面形态学 KD树 支持向量机 climbing robot motion blur wavelet transfourm surface morphology analysis KD-tree SVM
  • 相关文献

参考文献2

二级参考文献14

  • 1张洪光,王祁,魏玮.基于人工种群的路面裂纹检测[J].南京理工大学学报,2005,29(4):389-393. 被引量:10
  • 2Huang Y,Xu B.Automatic Inspection of Pavement Cracking Distress[J].Journal of Electronic Imaging,2006,15(1).
  • 3交通部公路科学研究院上海市公路管理处.JTG H20-2007公路技术状况评定标准[M].北京:人民交通出版社,2008.
  • 4Nejad F M,Zakeri H.An Optimum Feature Extraction Method Based on Wavelet-radon Transform and Dynamic Neural Network for Pavement Distress Classification[J].Expert Systems with Applications,2011,38(8):9442-9460.
  • 5Huang Y,Xu B.Automatic Inspection of Pavement Cracking Distress[J].Journal of Electronic Imaging,2006,15(1).
  • 6Oh H,Garrick N W,Achenie L E K.Segmentation Algorithm Using Iterative Clipping for Processing Noisy Pavement Images[C]//Proceedings of the2nd International Conference on Imaging Technologies:Techniques and Applications in Civil Engineering.[S.1.]:IEEE Press.1998:259-267.
  • 7Cheng H D,Miyojim M.Automatic Pavement Distress Detection System[J].Information Sciences,1998,108(1):219-240.
  • 8AndalóF A,Miranda P A V,Torres R S,et al.Shape Feature Extraction and Description Based on Tensor Scale[J].Pattern Recognition,2010,43(1):26-36.
  • 9Tsai Y C,Kaul V,Mersereau R M.Critical Assessment of Pavement Distress Segmentation Methods[J].Journal of Transportation Engineering,2009,136(1):11-19.
  • 10徐志刚,赵祥模,宋焕生,雷涛,韦娜.基于直方图估计和形状分析的沥青路面裂缝识别算法[J].仪器仪表学报,2010,31(10):2260-2266. 被引量:64

共引文献27

同被引文献146

引证文献25

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部