期刊文献+

四维CT影像中不同方法勾画肺内病灶作为照射靶区的体积差异 被引量:3

Target Volume Variation of Intrapulmonary Lesions Delineated in Four-dimensional CT Imaging
下载PDF
导出
摘要 目的分别在常规三维CT(3DCT)的自由呼吸下任意时相(FCT<sub>0</sub>)和四维CT(4DCT)影像上分别勾画肺内孤立性结节作为靶区并分析其体积差别。方法 8例患者(17个原发性肺内结节)和4例患者(转移性结节)分别接受FCT和4DCT扫描,4DCT分别按2、3、4、5、10个等间隔时相、最大密度投影(MIP)重建。对同一个肺结节分别在FCT(FCT<sub>0</sub>)和4CDT中的不同时相勾画肿瘤大体体积(GTV<sub>x</sub>0,x=0,1,2,3,4,5,6,7,8,9)。在3DCT中的FCT<sub>0</sub>均匀外放1、2、3、4和5 mm形成获得FCT<sub>x</sub>(x=1,2,3,4,5),分别用2、3、4、5、10个时相上勾画的GTV求并集获得合成GTV即ITV<sub>x</sub>(x=2,3,4,5,10)。用配对t检验分别比较FCT<sub>0</sub>、MIP与GTV<sub>x</sub>0、FCT<sub>x</sub>0、ITV<sub>x</sub>的差异。结果与FCT<sub>0</sub>相比,4DCT中GTV<sub>x</sub>0(x=0,1,2,3,4,5,6)减小21%<sup>3</sup>2%,GTV<sub>x</sub>0(x=7,8,9)减少7%-13%(P<0.05)。在FCT<sub>0</sub>基础上外放边界每增加1 mm,FCT<sub>x</sub>的绝对体积增加6<sup>9</sup> cm3,增加16%<sup>3</sup>1%;当外放边界分别为1、2,3、4和5 mm时,FCT<sub>1</sub>、FCT<sub>2</sub>、FCT<sub>3</sub>、FCT<sub>4</sub>和FCT<sub>5</sub>的体积分别较FCT<sub>0</sub>增加27%、68%、96%、141%、198%倍。所有ITV<sub>x</sub>体积均大于MIP体积,与MIP相比,ITV<sub>x</sub>的体积增加24%-54%;ITV<sub>2</sub>、ITV<sub>3</sub>均与MIP的体积无明显差别(P>0.05),ITV<sub>4</sub>、ITV<sub>5</sub>、ITV<sub>1</sub>0与MIP有明显差别(P<0.05)。结论同一个肺内病灶通过不同CT影像手段获得的靶区体积有明显差别,在肺癌放疗(特别是立体定向放疗)计划设计时需考虑该差异。 Objective To compare the volumetric variations of target volume including gross tumor volume(GTV) and internal target volume(ITV) those were delineated in 3-dimensional(3D) and 4-Dimensional(4D) CT imaging. Methods Eight primary non-small cell lung cancer patients with 17 intrapulmonary solitary lesions and 4 patients with metastatic nodes received free-phase CT(FCT_0)at random respiratory phase and 4DCT scanning. 4DCT was reconstructed with 2-,3-,4-,5-,10- phase and maximal intensity projection(MIP). For a single lesion, GTV was delineated in FCT_0 and various phases(GTV_x0, x=0, 1, 2, 3, 4, 5, 6,7, 8, 9)in 4DCTs. FCT_x(x=0, 1, 2, 3, 4, 5)was expanded for the GTV in FCT with a margin of 1, 2, 3, 4, 5 mm. ITV_2(x=2, 3, 4, 5, 10)was composed of 2, 3, 4, 5 and 10 phases. The difference among the FCT_x, ITV_xand MIP was compared by paired t-test. Results Compared with the GTV in FCT, GTV_x0(x=0, 1, 2, 3, 4, 5, 6) in 4DCT was decreased by 21%-32% and GTV_x0(x=7, 8, 9) by 7%-13%(P<0.05). The absolute and relative volume of FCT- x(x=0, 1, 2 3, 4, 5) was increased by 6-9 cm3 and 16%-31% respectively. As the additional margin were 1, 2,3, 4 and 5 mm, the GTV of FCT_1, FCT_2, FCT_3, FCT_4 and FCT_5 were increased 27%,68%,96%,141% and 198% respectively when comparing with that in GTV in FCT-0. ITV_x were signifi cantly larger than MIP(P<0.05). When compared with MIP, the ITV was increased by 24%-54%. ITV-2and ITV-3 were not signifi cantly different to the MIP(P>0.05). ITV-4, ITV-5, and ITV-10, were signifi cantly different to the MIP(P<0.05). Conclusion For a single intrapulmonary lesion, the target volume was signifi cantly different in FCT and 4DCT which should be carefully taken into account during the design of radiation planning, especially in the stereotactic body radiotherapy.
出处 《肿瘤防治研究》 CAS CSCD 北大核心 2014年第9期1009-1013,共5页 Cancer Research on Prevention and Treatment
基金 武汉市科技人才培育计划晨光计划项目(2014070401010203) 湖北省卫生厅科研一般项目(JX6B25)
关键词 肺癌 四维CT 照射靶区 放疗计划 Lung cancer Four-demensional CT Target volume Radiation planning
  • 相关文献

参考文献7

  • 1A.J. Cole,J.M. O’Hare,S.J. McMahon,C.K. McGarry,K.T. Butterworth,J. McAleese,S. Jain,A.R. Hounsell,K.M. Prise,G.G. Hanna,J.M. O’Sullivan.Investigating the Potential Impact of Four-dimensional Computed Tomography (4DCT) on Toxicity, Outcomes and Dose Escalation for Radical Lung Cancer Radiotherapy[J].Clinical Oncology.2013
  • 2Feng Liu,Ali Goodarzi,Haifeng Wang,Joanna Stasiak,Jianbo Sun,Yu Zhou,Hui Yu,Shu-xu Zhang,Rui-hao Wang,Guo-qian Zhang,Jian-ming Tan.The Feasibility of Mapping Dose Distribution of 4DCT Images with Deformable Image Registration in Lung[J].Bio-Medical Materials and Engineering.2014(1)
  • 3Jiajia Ge,Lakshmi Santanam,Camille Noel,Parag J. Parikh.Planning 4-Dimensional Computed Tomography (4DCT) Cannot Adequately Represent Daily Intrafractional Motion of Abdominal Tumors[J].International Journal of Radiation Oncology Biology Physics.2012
  • 4Elisabeth Weiss,Krishni Wijesooriya,S. Vaughn Dill,Paul J. Keall.Tumor and normal tissue motion in the thorax during respiration: Analysis of volumetric and positional variations using 4D CT[J].International Journal of Radiation Oncology Biology Physics.2007(1)
  • 5H. Helen Liu,Peter Balter,Teresa Tutt,Bum Choi,Joy Zhang,Catherine Wang,Melinda Chi,Dershan Luo,Tinsu Pan,Sandeep Hunjan,George Starkschall,Isaac Rosen,Karl Prado,Zhongxing Liao,Joe Chang,Ritsuko Komaki,James D. Cox,Radhe Mohan,Lei Dong.Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer[J].International Journal of Radiation Oncology Biology Physics.2007(2)
  • 6Robert Timmerman,James Galvin,Jeff Michalski,William Straube,Geoffrey Ibbott,Elizabeth Martin,Ramzi Abdulrahman,Suzanne Swann,Jack Fowler,Hak Choy.Accreditation and quality assurance for Radiation Therapy Oncology Group: Multicenter clinical trials using Stereotactic Body Radiation Therapy in lung cancer[J].Acta Oncologica.2006(7)
  • 7李奉祥,李建彬,张英杰,于金明.四维影像在肿瘤放射治疗中的应用[J].中华肿瘤杂志,2011,33(10):721-725. 被引量:23

二级参考文献25

  • 1Li G, Citrin D, Camphansen K, et al. Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat, 2008, 7:67-81.
  • 2Giraud P, Yorke E, Jiang S, et al. Reduction of organ motion effects in IMRT and conformal 3D radiation delivery by using gating and tracking techniques. Cancer Radiother, 2006, 10:269 - 282.
  • 3Evans PM. Anatomical imaging for radiotherapy. Phys Med Biol, 2008, 53 : R151-191.
  • 4Jaffray D, Kupelian P, Djemil T, et al. Review of image-guided radiation therapy. Expert Rev Anticancer Ther, 2007, 7:89-103.
  • 5Weiss E, Wijesooriya K, Dill SV, et al. Tumor and normal tissue motion in the thorax during respiration: analysis of volumetric and positional variations using 4D-CT. Int Radiat Oncol Biol Phys, 2007, 67:296-307.
  • 6Liu HH, Baiter P, Tutt T, et ai. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys, 2007, 68:531-540.
  • 7Kim YS, Park SH, Ahn SD, et al. Differences in abdominal organ movement between supine and prone positions measured using four- dimensional computed tomography. Radiother Oncol, 2007, 85 : 424-428.
  • 8Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real- time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys, 2002, 53:822-834.
  • 9Underberg RWM, Lagerwaard FJ, Slotman BJ, et al. Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. Int J Radiat Oncol Biol Phys, 2005, 63 : 253-260.
  • 10Rietzel E, Liu AK, Chen GT, et al. Maximum-intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oneol Biol Phys, 2008, 71:1245- 1252.

共引文献22

同被引文献19

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部