期刊文献+

基于LVQ和THz时域光谱的玉米品种分类鉴别研究 被引量:6

Research on Classification and Identification of Maize Varieties Based on LVQ and THz Time Domain Spectra
下载PDF
导出
摘要 农作物的产量和品质与其自身的品种密切相关,因此品种鉴别对于农业生产和安全具有极为重要的意义。研究提出将太赫兹时域光谱(THz-TDS)与神经网络学习矢量量化(LVQ)相结合的方法用于四类玉米品种鉴别。实验选取120粒玉米样本的衰减全反射(ATR)吸收系数0~70 cm^(-1)谱区作为LVQ网络输入,4个品种作为网络输出,随机划分测试集与训练集的样本比例为1:1、1:2和1:5时,测试集识别率分别为80%、82. 5%、95%;实验选取ATR吸收系数0~275 cm^(-1)全谱区作为LVQ网络输入时,测试集识别率分别为93. 3%、97. 5%、100%。实验结果表明采用太赫兹光谱结合LVQ方法能有效鉴别玉米品种,该方法对于农作物品种快速鉴别具有一定的借鉴性。 The yield and quality of crops are closely related to their own varieties, so the identification of varieties was of great importance to agricultural production and safety. In this paper, the method of combining Terahertz time domain spectroscopy(THz-TDS) with neural network learning vector quantization(LVQ) was proposed for the identification of four types of maize varieties. The 0-70 cm-1 spectral region of the Attenuated Total Reflection(ATR) absorption coefficient of 120 maize samples was selected as the LVQ network input, and four varieties were used as the network output. And the ratio of the sample set to the training set was 1: 1, 1: 2 and 1:5. The recognition rate of the test set was 80%, 82. 5% and 95%. While the full spectrum with 0-275 cm -1 of the ATR absorption coefficient was selected as the LVQ network. The recognition rate of the test set was 93. 3%, 97.5% and 100%. The experimental results showed that the maize varieties can be effectively identified by terahertz spectroscopy combined with LVQ method, which was capable of playing a reference role in the rapid identification of crop varieties.
作者 李慧 吴静珠 刘翠玲 孙晓荣 余乐 Li Hui;Wu Jingzhu;Liu Cuiling;Sun Xiaorong;Yu Le(Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing Technology and Business University,Beijing 100048)
出处 《中国粮油学报》 EI CAS CSCD 北大核心 2019年第2期125-129,共5页 Journal of the Chinese Cereals and Oils Association
基金 国家自然科学基金(61807001) 北京市教委重点项目(KZ201310011012) 河北省科技计划项目任务书(16272916)
  • 相关文献

参考文献8

二级参考文献100

  • 1逯美红,沈京玲,郭景伦,张存林.太赫兹成像技术对玉米种子的鉴定和识别[J].光学技术,2006,32(3):361-363. 被引量:21
  • 2国别贸易投资环境报告[R].中华人民共和国商务部.2002:190-192.
  • 3Diener R. G.,Mitchell J. P.,Rhoten M. L.. Using an X-ray image scan to sort bruised apples[J]. Agricul-tural Engineering, 1970, 51 (6): 356-361.
  • 4Tollner E.W., Hung Y.C., Upchurch B.L, et al. Relating X-ray absorption to density and water content in apples [J]. Transactions of the American Society of Agricultural Engineers, 1992, 35 (6): 1921-1929.
  • 5Shahin M. A., Tollner E. W. Apple classification based on watercore features using fuzzy logic [J]. Paper American Society of Agricultural Engineers, 1997, (1): 973077.
  • 6Shahin M.A., Tollner E.W., Evans M.D.,et al. Watercore features for sorting red delicious apples: a statisical approach[J]. Transactions of the ASAE, 1999, 42(6) : 1889-1896.
  • 7Barcelon E. G., Tojo S., Watanabe K.X-ray CT scanner for detecting internal changes in peach [C]. Proceedings of the International Symposium on Agricultural Machinery and Automation [A]. Taipei: 1997, 227-232.
  • 8Barcelon E. G., Tojo S., Watanabe K.X-ray Computed Tomography for Internal Quality Evaluation of Peaches [J]. J. Agric. Engng Res., 1999, 73:323-330.
  • 9Barcelon E G.X-ray lamges of Hollow Heart Potatoes in Water[J]. America Potato Journal,1973, (50) : 1-8.
  • 10Vachtsevanos G., Dale W., Heck B., et al. Fusion of visible and x-ray sensing modalities for the enhancement of bone detection in poultry products[J].Proceedings of SPIE - The International Society for Optical Engineering, 2000, (4203) : 102-110.

共引文献114

同被引文献81

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部