期刊文献+

一种融合邻域信息的模糊C-均值图像分割算法 被引量:3

Fuzzy C-means image segmentation algorithm incorporating neighborhood information
下载PDF
导出
摘要 模糊C-均值算法(fuzzy C-means,FCM)对图像噪声敏感,只考虑了图像数值信息而忽略了邻域空间信息,造成最终的图像分割结果不精确。为了克服FCM存在的问题,将图像局部信息与非局部信息融入到多测度模型中,扩充了原本聚类的单一测度。另外将先验概率引入隶属度矩阵中,使得每次迭代前,隶属度矩阵中像素点的邻域信息都被充分考虑,最后添加一个邻域隶属度惩罚项修正聚类结果。实验证明:该算法对噪声鲁棒性强,能够获得较为理想的图像分割效果。 The fuzzy C-means algorithm(FCM)is sensitive to image noise;in addition,it only considers the image numerical information and ignores the neighborhood spatial information,resulting in inaccurate final image segmentation result.To overcome this drawback,an FCM image segmentation algorithm is proposed in which the local information and non-local information of the image are integrated into a multidimensional model,which extends the original single dimension of clustering.In addition,a prior probability is introduced into the membership matrix,so that the neighborhood information of the pixel in the membership matrix is fully considered before each iteration,and then a neighborhood membership penalty is added to correct the clustering result.Finally,a penalty of neighborhood membership degree is used to modify the clustering results.Experimental results demonstrate that the algorithm is robust against noise and achieves an ideal image segmentation effect.
作者 狄岚 刘海涛 何锐波 DI Lan;LIU Haitao;HE Ruibo(College of Digital Media,Jiangnan University,Wuxi 214122,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第2期273-280,共8页 CAAI Transactions on Intelligent Systems
基金 江苏省六大人才高峰项目(DZXX-028)
关键词 模糊C-均值 图像分割 空间信息 局部信息 非局部信息 多测度模型 邻域隶属度 惩罚项 fuzzy C-means image segmentation spatial information local information non-local information multidimensional model neighborhood membership degree penalty term
  • 相关文献

参考文献4

二级参考文献166

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 3范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 4赵凤,范九伦.一种结合二维Otsu法和模糊熵的图像分割方法[J].计算机应用研究,2007,24(6):189-191. 被引量:18
  • 5MEHMET S,BULENT S.Survey over image thresholding techniquesand quantitative performance evaluation[J].Journal of ElectronicImaging,2004,13(1):146-165.
  • 6OTSU N.A threshold selection method from gray-level histograms[J].IEEE Trans on System Man and Cybernetic,1979,9(1):62-66.
  • 7GONG Jian,LI Li-yuan,CHEN Wei-nan.Fast recursive algorithmfor two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.
  • 8BUADES A,COLL B,MOREL J M.A non-local algorithm for imagedenoising[C]//Proc of IEEE International Conference on ComputerVision and Pattern Recognition.Washington DC:IEEE Computer Soci-ety,2005:60-65.
  • 9ZHAO Feng,JIAO Li-cheng,LIU Han-qing,et al.A novel fuzzyclustering algorithm with non local adaptive spatial constraint for imagesegmentation[J].Signal Processing,2011,91(4):988-999.
  • 10Freixenet J, Muoz X, Raba D, et al. Yet another survey on image segmentation: region and boundary information integration[C]//Proceedings of European Conference on Computer Vision. Berlin,Heidelberg: Springer, 2002:21-25.

共引文献39

同被引文献55

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部