期刊文献+

负载敏感的云任务三支聚类评分调度研究 被引量:11

Load-aware score scheduling of three-way clustering for cloud task
下载PDF
导出
摘要 在云计算商业化的服务模式中,追求服务质量、负载均衡与经济原则的多目标优化调度。针对集群资源使用率偏低的现象,提出了三支聚类评分(three-way clustering weight,TWCW)算法,首先分析云任务的多样化需求与资源的动态特性,采用三支聚类算法对任务集合聚类划分,然后结合任务属性对类簇对象进行评分调度。基于Cloudsim实验模拟表明:相比于k-means与FCM聚类调度,三支聚类评分算法(TWCW)在任务平均响应时间与资源利用率等方面均有显著提升。 A commercialized model is established for multi-objective optimization scheduling of service quality,balanced load,and economic principles in cloud computing.A three-way clustering weight(TWCW)algorithm is proposed to solve the problem of the low utilization rate of cluster resources.First,the diversified requirements of cloud tasks and the dynamic characteristics of resources are analyzed to cluster and divide the task set by the TWCW algorithm and then score scheduling by combination with task attributes.Simulation results based on Cloudsim show that compared with k-means and FCM clustering scheduling,the TWCW algorithm has significant improvements in the average task response time and resource utilization rate.
作者 吴俊伟 姜春茂 WU Junwei;JIANG Chunmao(School of Computer Science Technology and Information Engineering,Harbin Normal University,Harbin 150025,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第2期316-322,共7页 CAAI Transactions on Intelligent Systems
基金 中国博士后面上基金项目(2014M561330)
关键词 云计算 优化调度 多样化需求 动态资源 三支聚类 评分调度 任务响应时间 资源使用率 cloud computing optimal scheduling diversified requirement dynamic resource three-way clustering scoring scheduling response time of task resource utilization rate
  • 相关文献

参考文献5

二级参考文献62

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 3Foster I, et al. Cloud Computing and Grid Computing 360 - degree Compared[ C]. Proceedings of the 2008 Grid Computing Environ- ments Work shop. Washington DC : IEEE Computer Society, 2008.
  • 4Daniel Nurmi, Rich Wolski, Chris Grzegorczyk. The Eucalyptus Open Source Cloud - computing System [ C ]. Proceeding of the Cluster Computing and the Grid. California: University of Califor- nia, 2009.
  • 5Chien A, et al. Entropia: Architecture and Performance of An En- terprise Desktop Grid System[J]. Journal of Parallel and Distribu- ted Computing, 2003,63 (5) :597 - 610.
  • 6B Rochwerger, et al. The Reservoir Model and Architec - ture for Open Federated Cloud Computing [ J ]. IBM Journal of Research and Development, 2009,53 (4) : 1 - 17.
  • 7R Buyya. Economic - based Distributed Resource Management and Scheduling for Grid Computing[ D]. Melbourne: Monash Universi- ty, 2002.
  • 8D Bratton, J Kennedy. Defining a Slandard for Particle Swarm Op- timization[ C ]. Proceedings of the IEEE Swarm Intellige -nce Symposium. Honolulu : HI, 2007.
  • 9S Ali, et al. Representing Task and Machine Heterogeneities for Heterogeneous Computing systems [ J ]. Journal of Science and Engineering, 2000,3 ( 3 ) : 195 - 207.
  • 10A Ratnaweera, S K Halgamuge, H C Watson. Self - Organizing Hierarchical Particle Swarm Optimizer with Time - varying Accel- eration Coefficients[ J]. IEEE Trans. on Evolutionary Computa- tion, 2004,8 (3) :240 - 255.

共引文献30

同被引文献107

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部