期刊文献+

一种对应力变异语音的特征补偿方法 被引量:1

A compensation method for recognition of speech under G-force
下载PDF
导出
摘要 提出一种描述正常语音和变异语音之间关系的补偿因子。该补偿因子兼顾考虑了由于变异引起的特征分布中均值和方差的变化,并在k-均值初始化的参数基础上,采用期望最大化(EM)算法迭代估计变异补偿因子的值。通过估计出的补偿因子对变异语音特征进行补偿。对航空模拟飞行器中采集的应力变异下特定话者小词表孤立词的实验结果表明,利用所提出的方法可以将识别率提高32.3%。 A compensation factor is proposed, which can describe the relations between the neutral speech and the speech under stress. And the stress compensation factor also considers both the shift of means and the differences of the variances caused by the stress. Based on the parameters initialized by k-means method, the final results of the compensation factor are estimated by the EM algorithm. Through the compensation factor, the performance of a recognition system can be enhanced. Under the G-force stress, the proposed method can get 32.3% improvement for a small-vocabulary speaker-dependent system.
出处 《声学学报》 EI CSCD 北大核心 2004年第1期18-22,共5页 Acta Acustica
基金 国家自然科学基金资助项目(60085001)
  • 相关文献

参考文献13

  • 1张磊,韩纪庆,王承发,张文祥.基于特征加权的应力影响下顽健语音识别方法[J].中文信息学报,2002,16(1):7-12. 被引量:2
  • 2田斌,易克初.一种用于强噪声环境下语音识别的含噪Lombard及Loud语音补偿方法[J].声学学报,2003,28(1):28-32. 被引量:2
  • 3马永林,韩纪庆,张磊,吕成国,王承发.基于Teager能量算子(TEO)基频的应力影响下的变异语音分类[J].声学学报,2002,27(6):518-522. 被引量:14
  • 4Steeneken H J M, Hansen J H L. Speech under stress conditions: overview of the effect on speech production and on system performance. ICASSP'99, USA, 1999(4): 2079-2082.
  • 5Ghazale S E, Hansen J H L. Speech feature modeling for robust stressed speech recognition. Proceedings of ICSLP98,Australia, 1998:918-921.
  • 6Ghazale S E, Hansen J H L. A comparative study of traditional and newly proposed feature for recognition of speech under stress. IEEE Transaction on Speech and Audio Processing, 2000; 8(4): 429-442.
  • 7Hansen J H L. Morphological constrained feature enhancement with adaptive cepstral compensation (mce-acc) for speech recognition in noise and lombard effect. IEEE Transaction on Speech and Audio Processing, 1994; 2(4):598-614.
  • 8Hansen J H L. Analysis and compensation of speech under stress and noise for environment robustness in speech recognition. Speech Communication, 1996; 20(1/2): 151-173.
  • 9Lippmann R P, Martin E A, Paul D B. Multi-Style training for robust isolated-word speech recognition. ICASSP'87,USA, 1987:705-708.
  • 10Womack B D, Hansen J H L. N-channel hidden Markov models for combined stressed speech classification and recognition. IEEE Transaction on Speech and Audio Processing, 1999; 7(6): 668-677.

二级参考文献25

  • 1吕成国 张磊 等.G-Stress和Lombard效应作用下的变异语音谱图[J].高技术通讯增刊,2000,:223-226.
  • 2[1]R.P. Lippmann, E. A. Martin and D. B. Paul. Multi-Style Training for Robust Isolated-Word Speech Recognition, ICASSP' 87,1987,705-708
  • 3[2]J.H.L. Hansen and B. D. Womack. Classification of Speech Under Stress using Target Driven Features.Speech Communication, 1996,20:131-150
  • 4[3]Y. Chen. Cepstral Domain Talker Stress Compensation for Robust Speech Recognition. IEEE Trans. , On Acoustics, Speech and Signal Processing, 1988,36(4): 433-439
  • 5[4]J.H.L. Hansen. Adaptive Source Generator Compensation and Enhancement for Speech Recognition in Noisy Stressful Environment. ICASSP' 93,1993,2: 95-98
  • 6[5]T. Cover,J. Thomas. Elements of Information Theroy. John Wiley&Sons, Inc. , 1991,90-95
  • 7[6]S. Furui. Cepstral analysis technique for automatic speaker verification. IEEE Trans., On Acoustics,Speech and Signal Processing, 1981,29(4) :254-272
  • 8吕成国 周健 等.高噪声有变异语音库的建立.第五届全国人机语音通讯学术会议论文集[M].,1998.377-381.
  • 9Palival K K. Neural net classifiers for robust speech recognition under noise environments. Proceedings of ICASSP 90, 1990:429-432.
  • 10Boll S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979;27(2):113-120.

共引文献14

同被引文献16

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部