期刊文献+

主动板的正交性条件 被引量:5

ORTHOGONALITY CONDITIONS FOR ACTIVE PLATE
下载PDF
导出
摘要 给出主动结构的伴随主动结构定义,将由离散主动结构的基本方程推导出来的互易定理推广应用于连续主动结构,具体研究分布作动和分布测量的主动板.通过引入作动和测量的位置函数,给出线性控制方程和测量方程,推导出用主动板振型和伴随主动板振型表示的模态正交性条件,并用数值模拟实例加以解释.应用这些正交性条件,可将主动板的运动微分方程解耦. The adjoint structure of the active structure is denned, the reciprocity theorem, which is derived from the basic equations of the discrete active structure, is extended from the discrete active structures to the continuous active structures. The active plate with distributed sensor and actuator is studied. The control equation and the measurement equation are presented by using the functions locating actuation and measurement, respectively, and the orthogonality conditions are derived with the modal shapes of the active plate and its adjoint active plate. As a numerical example a rectangular plate is evaluated to give the notes about modes and orthogonality conditions of the active plate. The orthogonality conditions can be used to decouple the motion differential equations of the active plate.
作者 李宁 张景绘
出处 《力学学报》 EI CSCD 北大核心 2004年第1期72-78,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10272087) 国家自然科学基金委员会与中国工程物理研究院联合基金(10176042)资助项目~~
关键词 主动结构 主动板 正交性 振动控制 振动模态 互易定理 特征值矩阵 active structure, plate, control vibration, mode, orthogonality condition
  • 相关文献

参考文献7

  • 1Preumont A. Vibration Control of Active Structures. The Netherland: Kluwer Academic Press, Dordrecht. 1997
  • 2Benjeddou A. Advances in hybrid active-passive vibration and noise control via piezoelectric and viscoelastic constrained layer treatments. Journal of Vibration and Control, 2001,7:565~602
  • 3顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1998 (Gu Zhongquan, Ma Kougen, Chen Weidong. Active Control of Vibration. Beijing: National Defence Industry Press. 1998 (in Chinese))
  • 4Lam M J, Inman DJ, Saunders WR. Vibration control through passive constrained layer damping and active control. J Intelligent Material, Systems and Structures,1996,8:663~677
  • 5Baz A. Boundary control of beams using active constrained layer damping. J Vibration and Acoustics,1997,119:166~172
  • 6Sunar M, Rao SS. Distributed modeling and actuator locations for piezoelectric control system. AIAA J, 1996,34(10): 2200~2203
  • 7倪振华.振动力学.西安:西安交通大学出版社,1994(Ni Zhenhua. Vibration Mechanics. Xi'an: Xi'an Jiaotong University Press. 1994 (in Chinese))

同被引文献45

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部