期刊文献+

利用(k,n)-门限方案实现任意访问结构的新方法 被引量:2

A New Method of Using (k,n)-Threshold Scheme to Realize Any Access Structure
下载PDF
导出
摘要 使用整数规划,提出了一种利用(k,n)-门限方案实现任意访问结构的新方法.该方法具有如下优点:使用同一个(k,n)-门限方案分享秘密,每个秘密分享的参与者得到子秘密集合的一个子集;秘密分享方案的设计不依赖于特定的(k,n)-门限方案,可以使用任何(k,n)-门限方案实现任意的访问结构;对访问结构没有任何要求(如要求访问结构为图等);对任意给定的访问结构Γ,该方法所得到的秘密分享方案的(平均)信息率是所有可以使用同一个(k,n)-门限方案实现Γ的秘密分享方案中(平均)信息率最大的. Using integer programming, this paper provided a new design method which uses (k,n)-threshold scheme to realize any access structure. And this method has the following virtues.It uses a unique (k,n)-threshold scheme to share the secret, and each participant has a subset of the subsecrets set. The design of the secret sharing scheme is independent on the (k,n)-threshold scheme being used,it can use any (k,n)-threshold scheme to realize an access structure. This method can realize any access structure without the limits on the access structure to be realized (such as the access structure must be a graph). For any given access structure Γ, the (average) information rate of the secret sharing scheme designed by this method is the biggist among all the(average) information rates of the secret sharing schemes which can use a unique (k,n)-threshold scheme to realize Γ.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第1期103-106,共4页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(69973031 90104005) 国家高技术研究发展计划(863)项目(2001AA144060)
关键词 秘密分享方案 整数规划 访问结构 信息率 secret sharing scheme integer programming access structure information rate
  • 相关文献

参考文献10

  • 1[1]Shamir A. How to share a secret [J]. Communications of the Association for Computing Machinery,1979,22(11) :612-613.
  • 2[2]Blakley G R. Safeguarding cryptographic keys[M].Montvale :AFIPS Press, 1979. 313- 317.
  • 3[3]Asmuth Bloom. A modular approach to key safeguarding[J]. IEEE Transaction on Information Theory,1983,29(2) :208-210.
  • 4[4]Karnin E D, Greene J W, Hellman M E. On sharing secret systems[J]. IEEE Transaction on Information Theory, 1983,29(2): 35- 41.
  • 5[5]Benaloh J, Leichter J. Generalized secret sharing and monotome functions [J]. Lecture Notes in Computer Science, 1990,403 (88): 27 - 35.
  • 6[6]Ito M, Saito A, Nishizeki T. Multiple assignment scheme for sharing secret[J]. Journal of Cryptology,1993,6(1) :15-20.
  • 7[7]Babai L, Gal A, Wigderson A. Superpolynomial lower bounds for monotone span programs[J]. Journal of Combinatorica, 1999,19 (3): 301 - 319.
  • 8[8]Jovan D G. On inatroid characterization of ideal secret sharing schemes [J]. Journal of Cryptology,1998,11(2) :75-86.
  • 9[9]Martin K M. A simple publicly verifiable secret sharing scheme and its application to electronic voting [J]. In Advances in Cryptology, 1999, 1666 (1):148-164.
  • 10[10]Stinson D R. Decomposition constructions for secret sharing schemes[J]. IEEE Transactions on Information Theory,1998,40(2) :36-43.

同被引文献28

  • 1Shamir A. How to share a secret [J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 2Blakley G R. Safeguarding cryptographie keys [C] //Proc of the National Computer Conf 48. New York: AFIPS Press, 1979:313-317.
  • 3Karnin E, Green J, Hellman M. On secret sharing systems [J]. IEEE Trans on Information Theory, 1983, 29(1):35- 41.
  • 4Kurosawa K, Ogata W, Sakano K, et al. Nonperfect secret sharing schemes and matroids[C] //Proc of the Workshop on the Theory and Application of Cryptographie Techniques on Advances in Cryptology. New York: Springer, 1994: 126- 141.
  • 5Kurosawa K, Okada K. Combinatorial lower bounds for secret sharing schemes [J]. Information Processing Letters, 1996, 60(6): 301-304.
  • 6Blakley G R, Meadows C. Security of ramp schemes [C] // Proc of CRYPTO'84 on Advances in Cryptology. New York: Springer, 1985:242-268.
  • 7Ogata W, Kurosawa K, Tsujii S. Nonperfect secret sharing schemes [G] //LNCS 718: Proe of ,Advances in Cryptology (AUSCRYPT'92), Berlin: Springer, 1993:56-66.
  • 8Blundo C, Santis A De, Simone R De, et al. Tight bounds on the information rate of secret sharing schemes [J]. Design, Codes and Cryptography, 1997, 11:101-122.
  • 9Blundo C, Santis A De, Gargano L, et al. On the information rate of secret sharing schemes [J]. Theoretical Computer Science, 1996, 154(2): 283-306.
  • 10Blundo C, Santis A De, Gaggia A G, et al. New bounds on the information rate of secret sharing schemes [J]. IEEE Trans on Information Theory, 1995, 41(2): 549-554.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部