期刊文献+

伴行血管在高强度聚焦超声下对温度场的影响 被引量:7

Effect of Unequal Countercurrent Blood Vessels on the Temperature Distribution Due to HIFU
下载PDF
导出
摘要 在高强度聚焦超声(HIFU)下,研究了管径不同的伴行血管对于组织温度分布的影响.基于3个热平衡方程提出了1个生物热传导模型,针对带有直径为50~300μm成对血管的组织,利用有限元方法进行了3-D温度瞬态仿真,并对血管直径、血液流速和血液灌流率对3-D温度分布的影响进行了比较.结果表明,血管直径和血流速度是影响HIFU作用下组织温度分布的决定因素,此外,该模型可以给出较为准确的组织消融量. The paper investigated the effect of unequal countercurrent blood vessels on the temperature distribution during phased high intensity focused ultrasound (HIFU) treatment. A bioheat transfer model based on three heat balance equations was adapted for 3-D transient simulations. The simulation of this model using finite element method was carried out for the tissue with the 50-300 μm diameter paired blood vessels. Contribution from the vessel diameter, blood velocity and blood perfusion rate were compared and the influence on 3-D temperature distribution was estimated. The results show that the paired vessel diameter and the blood velocity are the crucial factors determining the distribution of temperature for HIFU treatment. Moreover, the model is able to give more precise information about the lesion volume of heated tissue.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2004年第1期130-134,共5页 Journal of Shanghai Jiaotong University
关键词 生物热传导 高强度聚焦超声 形状因子 有限元法 Finite element method Heat transfer Temperature distribution Ultrasonic applications Ultrasonic effects
  • 相关文献

参考文献17

  • 1[1]Daum D R, Hynynen K. A 256-element ultrasonic phased array system for the treatment of larger volumes of deep seated tissue[J]. IEEE Trans Ferroleet Freq Contr, 1999, 46(8): 1254-1268.
  • 2[2]Lemons D E, Weinbaum S, Jiji L M. Experiments studies on the role of the micro and macro vascular system in tissue heat transfer [J]. Am J Physiol,1987, 253(1): 128-135.
  • 3[3]Penns H H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J]. J Applied Physiology, 1948, 1 (1): 93- 122.
  • 4[4]Chato J C. Heat transfer to blood vessels[J]. ASME J Biomech Eng, 1980, 102(1): 110-118.
  • 5[5]Huang H W, Chan C L, Roemer R B. Analytical solutions of Pennes bioheat transfer equation with a blood vessel[J]. ASME J Biomech Eng, 1994, 116(2): 208-212.
  • 6[6]Weinbaum S, Jiji L M. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature[J]. ASME J Biomech Eng, 1985,107(2): 131-139.
  • 7[7]Baish J W. Heat transport by countercurrent blood vessels in the presence of an arbitrary temperature gradient[J]. ASME J Biomech Eng, 1990, 112(2):207-211.
  • 8[8]Wissler E H. Comment on the new bioheat equation proposed by Weinbaum and Jiji [J]. ASME J Biomech Eng, 1987, 109(3): 226-233.
  • 9[9]Chamy C K, Levin R L. Bioheat transfer in a branching countercurrent network during hyperthermia[J]. ASME J Biomech Eng, 1989, 111(3): 263-270.
  • 10[10]Incropera F P, de Witt D P. Fundamentals of heat and mass transfer[M]. 2nd. New York: Wiley &Sons, 1985. 387-404.

同被引文献56

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部