期刊文献+

TRMM降水数据在东北地区的精度验证与应用 被引量:15

Accuracy Validation and Application of TRMM Precipitation Data in Northeast China
原文传递
导出
摘要 利用东北地区2000—2007年的APHRODITE降水数据,基于GWR方法对TRMM降水数据进行修正,分析新的TRMM降水数据精度,并基于修正的TRMM降水数据对东北地区降水进行时空分布特征分析。结果表明:1APHRODITE降水数据与观测数据之间的线性相关性更高、均方根误差RMSE更小,数据具有较高的精度;2修正后的TRMM降水数据相关系数R有所提高,且RMSE值均有降低。整体来看,TRMM降水数据的降水量数值偏大于观测值;3修正TRMM降水数据在5—10月的误差相对较小,整体来看,在大部分区域的误差在0~30%之间;4东北地区降水分布极不均匀,整体呈从东南向西北减少趋势。11月到翌年3月的降水稀少,降水主要集中在夏季,其中7月降水量最大。 As the important component of the global water cycle, precipitation is the key parameter in hydrology, meteorology and climate. Conventional interpolated observed precipitation data cannot reflect the spatial variation due to the limitation of the number of stations. In recent decades, with the development of remote sensing and meteorological satellite technology, satellite remote sensing images has become an important source of spatial precipitation data to detect rainfall information. In this study, APHRODITE precipitation data in Northeast China from2000 to 2007 are used. We adjust the TRMM precipitation data based on GWR method, validate the accuracy of the adjusted data, and analyze the spatial and temporal distribution characteristics of precipitation in Northeast China based on the adjusted TRMM precipitation data.The conclusions are: 1) Correlation coefficient between APHRODITE and observed data is higher, and the root mean square error is smaller, so APHRODITE data have a higher accuracy.2) The adjusted TRMM precipitation data have a higher correlation coefficient and a smaller RMSE value. Overall, the TRMM precipitation is higher than that of observed data. 3) High value of R mainly exists in the northern, eastern and southeastern regions, low-values mainly exist in the western and central regions. 4) The BIAS of adjusted TRMM precipitation data is relatively small from May to October. Overall, the BIAS of most areas ranges in 0-30%. 5) The distribution of precipitation is uneven in Northeast China, which reduces from the southeast to the northwest. The rainfall mostly happens in summer while less happens from November to the following March. The largest rainfall happens in July.
出处 《自然资源学报》 CSSCI CSCD 北大核心 2015年第6期1047-1056,共10页 Journal of Natural Resources
基金 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室开放基金项目"中国东北地表物候遥感反演及交叉验证" 中国博士后科学基金资助项目(2014M561272) 中央高校基本科研业务费专项资金(14QIVJJ025) 吉林省博士后科研项目启动经费(RB201353) 吉林省科技发展计划资助项目(20150520069JH)
关键词 东北地区 TRMM GWR 精度验证 Northeast China TRMM precipitation GWR accuracy validation
  • 相关文献

参考文献8

  • 1Yatagai, Akiyo,Krishnamurti, T N,Kumar, Vinay,Mishra, A K,Simon, Anu.Use of APHRODITE Rain Gauge-Based Precipitation and TRMM 3B43 Products for Improving Asian Monsoon Seasonal Precipitation Forecasts by the Superensemble Method[J].Journal of Climate.2014(3)
  • 2Md. Nazrul Islam,Hiroshi Uyeda.Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh[J]. Remote Sensing of Environment . 2006 (3)
  • 3Brunsdon C,Fotheringham A S,Charlton M.Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis . 1996
  • 4P. Propastin,M. Kappas,S. Erasmi.Application of geographically weighted regression to investigate the impact of scale on prediction uncertainty by modelling relationship between vegetation and climate. International Journal of Spatial Data Infrastructures Research . 2008
  • 5SU F,HONG Y,LETTENMAIER D P.Evaluation of TRMM multisatellite precipitation analysis and its utility in hydrologic prediction in the La Plata Basin. Journal of Hydrometeorology . 2008
  • 6George J Huffman,Robert F Adler,David T Bolvin,Guojun Gu,Eric J Nelkin,Kenneth P Bowman,Yang Hong,Erich F Stocker,David B Wolff.The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology . 2007
  • 7Akiyo Yatagai,Osamu Arakawa,Kenji Kamiguchi,Haruko Kawamoto,Masato I. Nodzu,Atsushi Hamada.A 44-Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. SOLA . 2009
  • 8Fotheringham A S,Brunsdon C,Charlton M.Geographically Weighted Regression. . 2002

共引文献2

同被引文献227

引证文献15

二级引证文献166

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部