期刊文献+

南极南奥克尼群岛2017年春季南极磷虾资源声学评估 被引量:8

Acoustic estimation of Euphausia superba in the South Orkney Islands in austral spring 2017
下载PDF
导出
摘要 南极磷虾(Euphausia superba)为南大洋中上层生态系统的关键种,对其生物量的研究有助于更准确地掌握磷虾的生态和分布信息。基于2017年我国南极磷虾声学调查采集的断面回波映像,应用声学回波后处理软件(Echoview),评估了南奥克尼群岛周边水域的磷虾生物量。该海域磷虾体长范围为25.50~49.21mm,平均体长为(33.01±4.06) mm;其中雌性平均体长为(33.15±3.90) mm,雄性平均体长为(32.68±4.43) mm,雌、雄磷虾体长无显著性差异。本海域声学映像可分为1338个积分单元,最大单元磷虾密度为554.07 g/m^2,最小单元密度值为0 g/m^2。调查海域磷虾分布不均匀,87.90%的积分单元无磷虾生物量。磷虾平均密度为71.01g/m^2,总生物量为1.77×106 t,密度差异系数为97.4%。磷虾主要分布在水深<200 m的南奥克尼群岛大陆架海域,群岛东侧磷虾生物量多于西侧。积分单元中磷虾密度大于450 g/m^2但小于600 g/m^2的有2个,群岛东西两侧各1个;密度值大于300 g/m^2但小于450 g/m^2的积分单元有6个, 5个位于群岛东侧。远离群岛的2个断面(1, 9)和调查海域中心的2个断面(5, 6)磷虾生物量较少。本海域磷虾的昼夜垂直移动对磷虾生物量评估也无影响。磷虾白天聚集在60~180 m水层,随着时间推移,磷虾逐渐向上或向下移动。光照强度是触发磷虾白天下沉、夜晚上浮的因素之一。 Antarctic krill(Euphausia superba) is a key species in the Southern Ocean ecosystem, and knowledge regarding its biomass is essential to understand the ecology and distribution of krill. The acoustic data was collected across extensive gradients in the South Orkney Islands on the commercial fishing vessel Long Teng. Krill targets were identified in acoustic data using a multi-frequency identification window and converted to krill density using the Stochastic Distorted-Wave Born Approximation target strength model. The average krill length was(33.01±4.06) mm, with a maximum length of 49.21 mm and a minimum length of 25.50 mm. There was no significant difference between male and female krill length. The whole ecogram could be divided into 1338 integration units, of which 586 units were in daytime and 752 units were at night. The maximum krill density was554.07 g/m^2 and the minimum density was 0 g/m^2. The Antarctic krill were mainly aggregated, with 87.90% integration units having no biomass. There was no significant difference in diurnal NASC and Sv values of the 9 transects, which suggested that the diurnal vertical movement had no effect on the estimation of krill biomass. The average krill density was 71.01 g/m^2 and the total biomass was 1.77×106 t in this area. The krill were mainly aggregated in a 60–180 m water depth range in the daytime, and gradually moved upwards or downwards at night.Light intensity is one of the factors that influence the krill diurnal vertical movement. However, a proportion of the Antarctic krill sunk to deeper waters at night, which may be to prey on the deep-water food. The results of this study provide abundant information on krill distribution in this area and basic data for current feedback on the krill resource management of CCAMLR. In future, the research on the correlation between krill biomass and external factors(environmental factors, predators) can help us understand the population structures more accurately and predict the distribution of krill resources.
作者 王腾 朱国平 童剑锋 许柳雄 WANG Teng;ZHU Guoping;TONG Jianfeng;XU Liuxiong(South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Guangzhou 510300,ChinaCollege of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources,Shanghai Ocean University,Ministry of Education,Shanghai 201306,China;National Engineering Research Center for Oceanic Fisheries,Shanghai Ocean University,Shanghai 201306,China)
出处 《中国水产科学》 CAS CSCD 北大核心 2019年第2期333-341,共9页 Journal of Fishery Sciences of China
基金 国家自然科学基金项目(41776185,41606210) 中央级公益性科研院所基本科研业务费专项资金项目(2018YB01) 农业部南极海洋生物资源开发利用项(D8002-16-8007-2)
关键词 南极磷虾 生物量评估 回波映像 南奥克尼群岛 声学调查 Euphausia superba biomass estimation acoustic ecogram South Orkney Islands acoustic survey
  • 相关文献

参考文献3

二级参考文献29

  • 1赵宪勇 陈毓桢 李显森 孙继闽 金显仕 陈卫忠 李永振.多种类海洋渔业资源声学评估技术和方法探讨[J].海洋学报,2003,25(1):192-202.
  • 2M. Godlewska,Z. Klusek. Vertical distribution and diurnal migrations of krill — Euphausia superba Dana — from hydroacoustical observations, SIBEX, December 1983/January 1984[J] 1987,Polar Biology(1):17~22
  • 3Atkinson A, 1998. Life cycle strategies of epipelagic copepods in the Southern Ocean. Journal of Marine Systems, 15(1-4): 289–311 DOI:10.1016/S0924-7963(97)00081-X.
  • 4Atkinson A, Siegel V, Pakhomov E, et al, 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432(7013): 100–103 DOI:10.1038/nature02996.
  • 5Atkinson A, Sn?der R, 1997. Krill-copepod interactions at South Georgia, Antarctica, I. omnivory by Euphausia superba. Marine Ecology Progress Series, 160 : 63–76 DOI:10.3354/meps160063.
  • 6Atkinson A, Ward P, Hill A, et al, 1999. Krill-copepod interactions at South Georgia, Antarctica, Ⅱ. Euphausia superba as a major control on copepod abundance. Marine Ecology Progress Series, 176 : 63–79.
  • 7Daly K L, Macaulay M C, 1988. Abundance and distribution of krill in the ice edge zone of the Weddell Sea, austral spring 1983. Deep Sea Research Part A. Oceanographic Research Papers, 35(1): 21–41 DOI:10.1016/0198-0149(88)90055-6.
  • 8Fach B A, Hofmann E E, Murphy E J, 2002. Modeling studies of Antarctic krill Euphausia superba survival during transport across the Scotia Sea. Marine Ecology Progress Series, 231 : 187–203 DOI:10.3354/meps231187.
  • 9Hagen W, Schnack-Schiel S B, 1996. Seasonal lipid dynamics in dominant Antarctic copepods: energy for overwintering or reproduction?. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 43(2): 139–158 DOI:10.1016/0967-0637(96)00001-5.
  • 10Hewitt R P, Watkins J L, Naganobu M, et al, 2002. Setting a precautionary catch limit for Antarctic krill. Oceanography, 15(3): 26–33 DOI:10.5670/oceanog.

共引文献23

同被引文献122

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部