期刊文献+

基于SMDO-NGPC的无人机姿态控制律设计 被引量:4

Design of UAV Attitude Control Law Based on the SMDO-NGPC
原文传递
导出
摘要 针对无人机在飞行过程中存在的强非线性、快时变、强耦合,以及参数不确定和外部干扰情况下的鲁棒性差等姿态控制问题,采用了基于滑模干扰观测器的非线性广义预测控制算法对姿态控制律进行了设计。该方法融合了非线性广义预测控制算法的良好动态性和滑模干扰观测器的强鲁棒性,将无人机的姿态分为快、慢两个回路并分别将该方法应用到两个回路的控制律设计中,最后设计出快、慢回路控制律表达式及滑模干扰观测器模型。仿真结果表明:基于滑模干扰观测器的非线性广义预测控制算法的无人机姿态控制律能够克服外界干扰及气动参数大范围摄动的影响,具有良好的控制性能和抗干扰能力,可以更好地适应无人机快时变、高精度和强鲁棒的控制要求。 Aiming at the problem of strong nonlinearity,fast time-varying,strong coupling,and poor robustness under uncertain parameters and external disturbances,a nonlinear generalized predictive control algorithm based on sliding mode disturbance observer is used to design the attitude control law for UAV.This method combines the good dynamics of NGPC with the strong robustness of SMDO.The attitude of UAV is divided into two loops:fast loop and slow loop.The method is applied to the control law design of two loops respectively.Finally,the fast loop and slow loop control law expressions and sliding mode disturbance observers are designed.The simulation results show that the attitude control law of UAV based on sliding mode disturbance observer and nonlinear generalized predictive control algorithm can overcome the influence of external disturbance and large range perturbation of aerodynamic parameters,and has good control performance and anti-interference ability,which can better adapt to the requirements of UAV fast time-varying,high-precision and robust control.
作者 张立珍 傅健 陈玉林 Zhang Lizhen;Fu Jian;Chen Yulin(ChengXian College of Southeast University,Nanjing 210088,China;Ballistic Research Laboratory,Nanjing University of Science&Technology,Nanjing 210094,China)
出处 《战术导弹技术》 北大核心 2019年第2期78-84,共7页 Tactical Missile Technology
基金 国家自然科学基金青年基金项目[61603191] 东南大学成贤学院青年教师科研发展基金[z0018]
关键词 无人机 非线性广义预测控制算法 滑模干扰观测器 姿态控制 unmanned aerial vehicle(UAV) nonlinear generalized predictive control algorithm sliding mode disturbance observer attitude control
  • 相关文献

参考文献6

二级参考文献31

  • 1王忠俊.非线性飞行控制方法研究概述[J].飞行力学,1995,13(3):24-28. 被引量:5
  • 2朱亮,姜长生,陈海通,方炜.基于单隐层神经网络的空天飞行器直接自适应轨迹线性化控制[J].宇航学报,2006,27(3):338-344. 被引量:26
  • 3李素敏,王杰,宋北光.一种改进的PID控制算法[J].微计算机信息,2006(09S):40-41. 被引量:14
  • 4陈天华,郭培源.小型无人机自主飞行控制系统的实现[J].航天控制,2006,24(5):86-90. 被引量:22
  • 5Snell. Nonlinear Dynamic-inversion flight control of sopermaneuverable aircraft [ D 1 - University of Minnesota, 1991.
  • 6Chen W H, Balance D J, Gawthrop P J. Optimal control of nonlinear systems: a predictive control approach [ J ]. Automatic, 2003, 39 (1): 633-641.
  • 7Lenaick Besnard, Yuri B, Shtessel. Control of a quadrotor vehicle using sliding mode disturbance observer[C]. Proceedings of the 2007 American Control Conference. New York City, USA, July 11 - 13, 2007.
  • 8Chen W H, Balance D J, Gawthrop P J, Gribble J J, O' Reilly J. Nonlinear PID predictive controller[ J]. IEE Proc. Control Theory Appl., 1999,146(6) : 603 - 611.
  • 9Shaughnessy J D, Pinckney S Z, McMinn J D, Cruz C I, Kelley M L. Hypersonic vehicle simulation model: winged-cone configuration [R]. NASA TM- 102610, 1990.
  • 10Chen W H. Disturbance observer based control for nonlinear systems [J]. IEEE Trans. Mechatronics, 2004, 9(4): 706-710.

共引文献62

同被引文献43

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部