摘要
本文在Banach 空间中讨论了一类形为-(du)/(dt)=A(t)u+B(t)u的发展型算子方程的投影法近似可解性,并在Hilbert 空间中给出敛速估计.其中,{A(t);tεR^+}和{B(t);tεR^+}为两族稠定非线性算子,A(t)是强增生的,B(t)是下半有界的.
We discuss the projectional approximatlon-solvability for a class of nonlinearevolution equations in Banach spaces given by-(du)/(dt)=A(t)u+B(t)u,u(0)=u_6,where {A(t);t(?)R^+}and{B(t);t(?)R^(?)}are two families of densely defined nonlinearoperators.Operators A(t)are strongly accretive and operators B(t)are lower-semibounded.The error estimations are given in Hilbert spaces.
出处
《中山大学学报(自然科学版)》
CAS
1985年第1期116-126,共11页
Acta Scientiarum Naturalium Universitatis Sunyatseni