期刊文献+

基于司法大数据的高校行政裁量实证研究——兼论教育法学实证研究的大数据思维 被引量:2

Empirical Study on Administrative Discretion of Colleges and Universities Based on Judicial Big Data——Big Data Thinking in the Empirical Study of Educational Law
原文传递
导出
摘要 司法大数据的建设与完善为教育法学实证研究提供了现实路径。在大数据思维下,对涉及高校纪律处分诉讼的232个讼争焦点进行量化分析,可以认为《普通高等学校学生管理规定》对纪律处分正当程序的规范是必要的,但由于对教育司法实践关注与回应的缺乏,对高校治理有重要影响的行政裁量规范还不够细致和完善。基于司法大数据中教育法治数据的实证研究,可对宏观司法趋势和微观案例数据信息进行比较分析,能够有针对性地调校立法,缩小教育法律法规、规章和法治实践的'落差';同时,大数据思维下的法实证研究也丰富了教育法学研究范式,有利于拓展教育法学的发展空间。 The construction and perfection of judicial big data provide a realistic path for the empirical study of educationallaw.On the basis of big data thinking,the quantitative analysis of 232 litigations in disciplinary proceedings in colleges anduniversities shows that it is necessary for Regulations on the Student Management in Ordinary Universities to standardize the dueprocess of disciplinary action.However,due to the lack of attention and response to the educational judicial practice,theadministrative discretion norms,which have an important impact on the governance of colleges and universities,are not meticulousand perfect.The empirical study based on judicial big data of educational law can compare and analyze the macro judicial trend andmicro case data information.Therefore,the adjustment legislation can be targeted.The gap between educational law and judicialpractice can be bridged.At the same time,the empirical study of law under big data’s thinking enriches the research paradigm ofeducational law,which is helpful to expand the development space of educational law.
作者 王工厂 WANG Gong-Chang(School of Politics and Public Management,Zhengzhou Normal University,Zhengzhou 450044,China)
出处 《郑州师范教育》 2019年第4期1-10,共10页 Journal of Zhengzhou Normal Education
基金 2018年度河南省哲学社会科学规划项目“基于校生诉讼司法大数据的高校治理司法审查实证研究”(2018BFX017)
关键词 司法大数据 高校行政裁量 实证研究 judicial big data administrative discretion in colleges and universities empirical study
  • 相关文献

参考文献13

二级参考文献227

共引文献977

同被引文献17

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部