摘要
目的:利用主成分分析(PCA)和支持向量机(SVM)算法,建立炉甘石生品、伪品及炮制品的近红外漫反射光谱(NIRS)鉴别模型。方法:采集炉甘石生品、伪品及炮制品的NIRS,选取特征谱段,优选光谱预处理方法及最佳主成分数,建立PCA-SVM鉴别模型。结果:在7 500~4 000 cm-1谱段,以一阶导数法(FD)为最佳光谱预处理方法,PCA提取的光谱前5个主成分为最佳主成分,并经网格搜索算法确定惩罚因子c=0. 25,核函数参数g=8为最佳SVM内部参数,建立炉甘石PCA-SVM鉴别模型。该模型五折交叉验证准确率100%,且模型对训练集和测试集样品预测正确率亦均达100%。结论:基于PCASVM算法所建立的炉甘石NIRS鉴别模型预测准确率高,结合固体粉末漫反射技术无损、快速的优点,该模型可用于炉甘石生品、伪品及炮制品的无损、快速鉴别。
Objective:To establish a near-infrared diffuse reflectance spectroscopy(NIRS identification model for crude products,counterfeit products and processed products of Calamina by principal component analysis(PCA)and support vector machine(SVM)algorithm.Method:NIRS of crude products,counterfeit products and processed products of Calamina were collected,the characteristic spectrum segments were selected,the preprocessing method and the optimum principal component number were optimized,and the PCASVM qualitative model was established.Result:The characteristic spectrum segment of analysis model was 7 500-4 000 cm-1.Spectra were preprocessed by the first-order derivative method(FD).The optimum principal component number was 5.And the optimum internal parameters of SVM[penalty factor(c)=0.25 and kernel function parameter(g)=8]were screened by applying the grid search algorithm.In the PCA-SVM qualitative model,the prediction accuracy rate was 100%for the 5-fold cross validation,and the prediction accuracy rates also were 100%both for training set and test set.Conclusion:PCA-SVM analysis model of NIRS for Calamina samples has a high prediction accuracy rate,and it can be used for the rapid and nondestructive identification of crude products,counterfeit products and processed products of Calamina by combining the diffuse reflection technique on solid powder.
作者
陈龙
张晓冬
孙扬波
陈科力
CHEN Long;ZHANG Xiao-dong;SUN Yang-bo;CHEN Ke-li(Xiangyang Central Hospital,Affiliated Hospital of Hubei University of Arts and Science,Xiangyang 441021,China;Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription,Hubei University of Chinese Medicine,Wuhan 430065,China)
出处
《中国实验方剂学杂志》
CAS
CSCD
北大核心
2019年第18期116-123,共8页
Chinese Journal of Experimental Traditional Medical Formulae
基金
国家中药标准化项目(1399)
湖北中医药大学教育部重点实验室2017年度开放基金课题
关键词
炉甘石
近红外漫反射光谱
主成分分析
支持向量机
一阶导数法
网格搜索算法
五折交叉验证
Calamina
near-infrared diffuse reflectance spectroscopy
principal component analysis
support vector machine
first-order derivative method
grid search algorithm
5-fold cross validation