摘要
美国第十届数学竞赛于今年五月举行。下面是竞赛题和解答。 1.已知一角大小为180°/n,其中n为不能被3整除的正整数。证明:这个角可以用欧几里得的作图工具(圆规与直尺)三等分。解:因为n是不能被3整除的正整数,所以n=3K±1。如果n=3K+1,由于180°/3-K×180°/n=180°/3n(n-3K)=180°/3n,且180°/n为已知角,所以K×180°/n可用圆规与直尺作出,显然180°/3=60°可用圆规直尺作出,所以180°/3n可作。也就是说,这时180°/n可以用圆规直尺三等分。如果 n=3K-1,那么由于 K×180°/n-180°/3=180°/3n(3K-n)