期刊文献+

每期一题

下载PDF
导出
摘要 题:设锐角α和β满足等式 sin^2α+sin^2β=sin(α+β), 试证明α+β=1/2π。本题是第十七届苏联数学奥林匹克十年级第1题。引导学生深入探索其题设与题断间的内在联系,寻求它的种种不同的证明途径,无疑将有益于学生分析、判断、推理诸能力的增强。下面介绍该题的四种证法。证法一(分析法)将已知等式改写为sin α(sinα-cosβ)=sinβ(cosα-sinβ) 因为 sinα>0,sinβ>0。
作者 李孟康
机构地区 湖南慈利一中
出处 《中学数学教学》 1987年第2期49-49,39,共2页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部